Does the Exchange Rate Respond to Monetary Policy in Emerging Markets? Evidence from Mexico

Pavel Solís

Banco de México

January 2022

Introduction

- Exchange rate response to monetary policy in emerging markets is an open question
- In standard models: policy rate increase \rightarrow currency appreciates
- Counterintuitive early evidence for advanced economies \rightarrow FX puzzle
 - But event studies with intraday and daily data in line with standard models
- For emerging markets, low or nonexistent response \rightarrow High-frequency FX puzzle
 - Based on event studies with daily data

This Paper

- Do central banks in emerging markets influence their own currencies? Yes
 - New dataset of intraday changes in asset prices for Mexico
 - Tightening: currency appreciates, yield curve flattens
- Is there an exchange rate puzzle in emerging markets? No
 - Exchange rate response is sensitive to data frequency
 - 'Puzzle' explained by wide event windows and omitted variables

Related Literature

Effects of monetary policy on exhchage rates

AE: Grilli and Roubini (1995); Kearns and Manners (2006); Faust et al. (2007); Wright (2012); Kearns, Schrimpf, et al. (2018); Ferrari et al. (2021). EM: Aktaş et al. (2009); Hausman and Wongswan (2011); Duran et al. (2012); Kohlscheen (2014); Pennings et al. (2015); Kim and Lim (2016).

• Identification of monetary policy surprises

Christiano et al. (1999); Kuttner (2001); Zettelmeyer (2004); Gürkaynak and Wright (2013); Lloyd (2018); Nakamura and Steinsson (2018).

• Event studies involving Mexico

Borensztein et al. (2001); Rosa (2011); Hausman and Wongswan (2011); De Pooter et al. (2014); Kohlscheen (2014); Kearns, Schrimpf, et al. (2018); Hernandez-Vega (2021).

Roadmap

- Identification of policy rate surprises
- Effects of policy rate surprises
 - Exchange rate and yield curve
- Solving the 'high-frequency' exchange rate puzzle
 - Intraday vs. daily

Identification of Policy Rate Surprises

Monetary Policy Surprises

- Monetary policy intrinsically endogenous
 - Key to focus on 'surprises' in policy decisions
- Event studies with high-frequency data isolate surprise component of decisions
 - Strategy: Intraday changes in asset prices around monetary policy events
 - Assumption: Changes in market expectations induced by policy announcements
 - Outcome: Clean and model-free (yet small) monetary policy surprises

Monetary Policy in Mexico

- Banxico implements monetary policy through a five-member Governing Board
- 2001: Inflation targeting formally adopted \rightarrow Target set at 3% \pm 1%
- 2003: Calendar of monetary policy meetings released
- 2008: Overnight interbank interest rate adopted as policy rate
- 2015: Change in time of announcements (Fridays 9 am CT to Thursdays 1 pm CT)

Policy Rate Surprises in Mexico

- Elsewhere, futures or overnight indexed swaps (OIS) on policy rate
- In Mexico, swap market references TIIE28D
- 3M swap: Most liquid with shortest maturity and longest history
 - Trades **within** the day
 - Good measure of monetary stance in short run
- Policy rate surprises based on changes in 3M swap rate

Dataset

- Asset price changes in 30-minute windows around regular policy announcements
 - Policy rate surprises: 3M swap rate
 - Effects: Exchange rate (pesos per U.S. dollar), bond yields (2Y, 5Y, 10Y, 30Y)
- Sample period: January 2004 (daily) or January 2011 (intraday) to November 2021
- Source: Bloomberg
- Robustness: 50-minute windows, survey-based surprises

10-Year Yield on June 24, 2021

Policy Rate in Mexico: Change vs. Surprises

Quantifying Effects of Policy Rate Surprises on Asset Prices

$$\Delta y_t = \beta_0 + \beta_1 \Delta x_t + \varepsilon_t,$$

- Δy_t : Change in exchange rate returns or bond yields
- Δx_t : Policy rate surprises (i.e. change in 3M swap rate)
- ε_t : Variations in dependent variable unrelated to shocks in policy rate
- Frequency is key to satisfy exogeneity assumption and give causal interpretation
 - Intraday vs. Daily vs. Monthly vs. Quartely

Effects

Response of Asset Prices to PRS: Intraday Data

	Δ	FX	$\Delta 2Y$	Yield	$\Delta 5 Y$	Yield	$\Delta 10Y$	Yield	$\Delta 30Y$	Yield
PR Surprise	-2.22^{**} (0.94)	-2.22^{**} (0.93)	0.68^{***} (0.08)	0.68^{***} (0.08)	0.54^{***} (0.14)	0.54^{***} (0.14)	0.44^{***} (0.07)	0.45^{***} (0.07)	0.31^{***} (0.07)	0.32^{***} (0.07)
PR Expected	. ,	0.0087 (0.24)	× ,	-0.032 (0.02)	× ,	-0.031 (0.02)		-0.033 (0.02)	× ,	-0.041* (0.02)
Observations R-squared	86 0.23	86 0.23	70 0.73	70 0.74	$\begin{array}{c} 55\\ 0.38\end{array}$	$\begin{array}{c} 55\\ 0.41 \end{array}$	$70 \\ 0.55$	70 0.57	70 0.38	$70 \\ 0.42$

Notes: Robust standard errors are shown in parentheses. *, **, *** asterisks respectively indicate significance at the 10%, 5% and 1% level.

Effects

Response of Asset Prices to PRS: Daily Data

Δ FX		Δ 2Y Yield		Δ 5Y Yield		Δ 10Y Yield		Δ 30Y Yield		
PR Surprise	-0.61 (1.35)	$0.06 \\ (0.54)$	0.70^{***} (0.09)	0.50^{***} (0.07)	0.77^{***} (0.24)	0.53^{***} (0.09)	0.56^{***} (0.12)	0.45^{***} (0.07)	0.35^{**} (0.15)	0.40^{***} (0.08)
Obs. since 2011 Obs. since 2004	86	189	70	189	55	189	70	189	70	134
R-squared	0.00	0.00	0.54	0.37	0.35	0.34	0.41	0.26	0.18	0.22

Notes: Robust standard errors are shown in parentheses. *, **, *** asterisks respectively indicate significance at the 10%, 5% and 1% level.

Persistence of Effects

- Not only initial reaction but persistence of response
- Local projections:

$$y_{t+h} - y_{t-1} = \alpha_h + \gamma_h \Delta x_t + u_{t+h},$$

- For announcement on day t, changes from t 1 to t + h with $h = 0, 1, \dots, 10$ in:
 - Exchange rate
 - Bond yields

Puzzle

Validation Study

- Errors-in-variables perspective to understand puzzle
- Validation study with two lengths for event window
 - Intraday as if true, daily as if measured with error
 - So, daily data involves measurement error in **both** variables
- Classical measurement error model: When measurement error only in

— Independent variable $\rightarrow \hat{\beta}_1$ biased towards zero (attenuation bias)

— Dependent variable $ightarrow \hat{eta}_1$ consistent but with larger standard error

Assessment of Classical Measurement Error Assumptions

$x = x^* + u \qquad \qquad y = y^* + \nu$						
Measurement Error in	Assumptions	Data	<i>p</i> -value			
Dependent Variable Only	$\sigma_u = 0$ $\rho_{\nu x^*} = 0$ $\rho_{\nu y^*} = 0$	$1.86 \\ 0.16 \\ -0.08$	$\begin{array}{c} 0.149 \\ 0.444 \end{array}$			
Independent Variable Only	$\sigma_{\nu} = 0$ $\rho_{ux^*} = 0$ $\rho_{uy^*} = 0$	$62.18 \\ -0.01 \\ 0.08$	$0.958 \\ 0.474$			
	$0<\lambda<1$	0.944				

Notes: The last column tests the null hypothesis of zero correlation. The attenuation factor is calculated according to $\lambda = \sigma_{x^*}^2 / \left(\sigma_{x^*}^2 + \sigma_u^2 \right)$, where $\sigma_{x^*} = 7.64$.

Puzzle

Response of Exchange Rate to PRS: Intraday vs. Daily

	Intraday F	TX Returns	Daily FX Returns		
PRS Intraday	-2.22**		-0.92		
	(0.94)		(1.37)		
PRS Daily		-2.01**		-0.61	
		(0.84)		(1.35)	
Observations	86	86	86	86	
R-squared	0.23	0.20	0.01	0.00	

Notes: Robust standard errors are shown in parentheses. *, **, *** asterisks respectively indicate significance at the 10%, 5% and 1% level.

Why Noise in Exchange Rate Returns Explains the Puzzle?

- Noise in policy rate surprises vs noise in exchange rate returns
- Measurement error in dependent variable can cause bias if:
 - Systematically related to independent variable X
 - Captures effects of variables influencing dependent variable \checkmark
- If noise in dependent variable captures omitted variable, bias and imprecision

Potential Omitted Variables

- Many factors influence daily exchange rate returns
 - VIX, U.S. Treasury yields, WTI crude oil price
 - U.S. macro news can be released on 'Banxico days'
 - ← Example: U.S. labor market data
- Regression:

 $\Delta y_t = \beta_0 + \beta_1 PRS_t + \beta_2 \Delta VIX_t + \beta_3 \Delta USY_t + \beta_4 WTI_t + \beta_5 Jobs_t + \varepsilon_t$

Puzzle

Exchange Rate Response and Omitted Variables

	Daily FX Returns						
PRS Intraday	-0.92		-1.45				
	(1.37)		(1.24)				
PRS Daily		-0.61		-1.36			
		(1.35)		(1.25)			
ΔVIX			14.8^{***}	15.1^{***}			
			(4.40)	(4.38)			
Δ 2Y Yield			0.95	1.04			
			(3.22)	(3.22)			
WTI Price			-0.20*	-0.20*			
			(0.11)	(0.11)			
IJC Surprise			-1.73**	-1.79^{**}			
			(0.86)	(0.90)			
Observations	86	86	86	86			
R-squared	0.01	0.00	0.20	0.19			

Notes: Robust standard errors are shown in parentheses. *, **, *** asterisks respectively indicate significance at the 10%, 5% and 1% level.

Conclusions

Conclusions

- Significant effects of policy rate surprises on asset prices
 - Tightening: currency appreciates, yield curve flattens
- Exchange rate puzzle in emerging markets
 - Explained by wide event windows and omitted variables
 - Solved with intraday data

Appendix

Exchange Rate on June 24, 2021

MXN/USD

< 10Y

Appendix

Summary Statistics of Intraday Asset Price Changes

Mean Std. Dev. Min. Max. Obs Policy Rate Surprises -0.37.6-45.816.086 PRS > 04.44.10.3 16.036 PRS < 0-5.28.8 -45.8-0.336 FX Returns -8.7 34.5-165.455.386 -0.5 Δ 2-Year Yield 66 -37.711.170 Δ 5-Year Yield -0.14.8-15.419.155 Λ 10-Year Yield -0.75.0-25.810.970 Δ 30-Year Yield -0.84.2-19.88.270

Notes: All units are expressed in basis points. Sample period is January 2011 to November 2021.

Data

Appendix

Summary Statistics of **Daily** Asset Price Changes

	Mean	Std. Dev.	Min.	Max.	Obs
Policy Rate Surprises	-0.4	7.9	-45.8	18.5	86
PRS > 0	4.5	5.0	0.2	18.5	35
PRS < 0	-4.8	8.4	-45.8	-0.2	40
FX Returns	-14.3	68.5	-170.4	142.2	86
Δ 2-Year Yield	-1.2	7.8	-32.6	23.3	86
Δ 5-Year Yield	-1.7	8.8	-41.1	31.8	86
Δ 10-Year Yield	-1.9	7.3	-34.8	10.5	86
Δ 30-Year Yield	-2.1	6.6	-28.1	12.6	86

Notes: All units are expressed in basis points. Sample period is January 2011 to November 2021.

Data

Persistence of Exchange Rate Response to PR Tightening

Notes: This figure plots the coefficient estimates and 95% confidence intervals for the response of the exchange rate (FX) returns to policy rate surprises. Returns are calculated from close of day t - 1 to day t + h, where t is a day with a monetary policy announcement and h = 0, 1, ..., 10.

Persistence of Yield Curve Response to PR Tightening

Notes: This figure plots the coefficient estimates and 95% confidence intervals for the response of the 2-, 5-, 10- and 30-year yield changes to policy rate surprises. Yield changes are calculated from close of day t - 1 to day t + k, where t is a day with a monetary policy announcement and k = 0, 1, ..., 10.

Persistence