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Econometŕıa en una diapositiva

Planteamos un modelo econométrico para abordar una pregunta de interés

• Buscamos explicar una variable en términos de otras

Para estimar los parámetros del modelo, utilizamos variables aleatorias

• Esas variables aleatorias se llaman estimadores

• Los valores particulares de esas variables aleatorias se obtienen de los datos

En econometŕıa, utilizamos los estimadores para:

• Estudiar sus propiedades (ej. valor promedio)

• Hacer inferencia sobre los parámetros del modelo

Todo con el fin de responder nuestra pregunta de investigación
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Notación
Letras griegas

Letras griegas (minúsculas) comúnmente usadas:

α alfa

β beta

γ gama

δ delta (mayús. ∆)

ε épsilon

θ teta

λ lambda

µ mu

π pi

ρ ro

σ sigma (mayús. Σ)

ϕ fi (mayús. Φ)

χ ji
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Notación
Śımbolos

Śımbolos matemáticos comúnmente usados:

̸= no es igual

≈ aproximadamente igual

∀ para todo

| tal que, condicional

∆ cambio, variación∑
suma

∼ se distribuye

=⇒ implica

≠⇒ no implica

⇐⇒ si y solo si

→ converge a, tiende a

m × 10n, mEn m por diez elevado a n
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Proporciones y Porcentajes
Una proporción es la forma decimal de un porcentaje (ej. 28% a 0.28)

Un porcentaje se obtiene al multiplicar una proporción por 100 (ej. 0.82 a 82%)

Cambios:

• Cambio en cantidad (cambio absoluto): x1 − x0 = ∆x (ej. de 10 a 12, 2)

• Cambio proporcional (cambio relativo): x1−x0

x0
= ∆x

x0
(ej. de 10 a 12, 0.2)

• Cambio porcentual: %∆x = 100(∆x
x0
) (ej. de 10 a 12, 20%)

Cuando x está en porcentaje, hay 2 formas de describir el cambio:

• Cambio en puntos porcentuales: ∆x (ej. de 4% a 6%, 2 p.p.)

• Cambio porcentual: %∆x (ej. de 4% a 6%, 50%)

Un punto base es la centésima parte de 1%, expresa cambios en tasas de interés
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Funciones lineales
Una variable

y es una función lineal de una variable x si

y = β0 + β1x,

donde β0 es el intercepto y β1 es la pendiente

• La relación lineal entre x y y implica que ∆y = β1∆x

• ∆x = 1 genera el mismo ∆y sin importar el valor inicial

• β1 es el efecto marginal (constante) de x sobre y

Una ĺınea recta tiene la misma pendiente (∆y/∆x) en todos sus puntos
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Funciones lineales
Dos variables

y es una función lineal de dos variables x1 y x2 si

y = β0 + β1x1 + β2x2,

donde β0 es el intercepto, y β1 y β2 son las pendientes

• y = β0 cuando x1 = 0 y x2 = 0

• La relación lineal implica que ∆y = β1∆x1 + β2∆x2

• Si ∆x2 = 0, ∆y = β1∆x1 =⇒ β1 =
∆y
x1

(pendiente en la dirección de x1)

• Si ∆x1 = 0, ∆y = β2∆x2 =⇒ β2 =
∆y
x2

• β1 es el efecto parcial de x1 sobre y (cómo cambia y con x1 cuando x2 fijo)

• β2 es el efecto parcial de x2 sobre y
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Combinaciones lineales

Si c1 y c2 son 2 constantes, p y q son 2 variables, entonces

m = c1p + c2q

• La nueva variable m es una combinación lineal perfecta de p y q

Ejemplos

• c1 = 1 y c2 = 1

• c1 = 1, 000 y c2 = 0

Misma idea se puede extender a k constantes y k variables
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Funciones No Lineales

Funciones no lineales:

• El cambio en y para un cambio dado en x depende del valor inicial de x

• Permiten capturar rendimientos marginales decrecientes o crecientes

– Insumo aumenta manteniendo otros fijos, producción adicional disminuye

– Todos los insumos aumentan, producción aumenta en mayor proporción

• Comúnmente usadas:

– Cuadrática

– Logaritmo

– Exponencial
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Función cuadrática

y es una función cuadrática de x si

y = f (x) = β0 + β1x+ β2x
2

Su derivada es:

f ′(x) = β1 + 2β2x
∗ = 0 =⇒ x∗ = − β1

2β2

Si β1 > 0 y β2 < 0,

• x∗ es un máximo

• Efecto marginal decreciente de x sobre y

– Efecto puede ser negativo: Para x > x∗, incrementos en x reducen y
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Logaritmo natural
La función logaritmo natural:

y = ln(x) = log(x), x > 0

• Rendimientos marginales decrecientes, pero el efecto nunca es negativo

– Pendiente → 0

• Es útil para hacer aproximaciones (ej. rendimientos accionarios)

– log(1 + x) ≈ x cuando x ≈ 0

– log(x) ≈ x− 1 cuando x ≈ 1

La diferencia de logaritmos se usa para aproximar cambios cuando x1

x0
≈ 1

• ∆ log(x) = log(x1)− log(x0) = log(x1

x0
) ≈ x1

x0
− 1 = x1−x0

x0
= ∆x

x0

• %∆x ≈ 100×∆ log(x)
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Logaritmo natural
Elasticidad

Formas de medir la sensibilidad de y a las variaciones de x

• Pendiente: Depende de unidades de medición, no constante en curvas

• Elasticidad: Las variables no necesitan estar en las mismas unidades

La elasticidad mide el cambio porcentual en y cuando x aumenta 1%

ε =
∆y

∆x

x

y
=

%∆y

%∆x
≈ ∆ log(y)

∆ log(x)

• Si |ε| < 1, la curva es inelástica

• Si |ε| = 1, la curva es isoelástica

• Si |ε| > 1, la curva es elástica
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Logaritmo natural
Elasticidad

La función log permite especificar modelos con elasticidad constante

log(y) = β0 + β1 log(x) =⇒ β1 =
∆ log(y)

∆ log(x)

• β1 es la elasticidad de y con respecto a x

• Modelo ampliamente usado en econoḿıa emṕırica

• En y = β0 + β1x, la elasticidad no es constante, depende de x

Pregunta

¿Cuál es la elasticidad (∆y
∆x

x
y
) de una ĺınea recta?
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Función exponencial

Función exponencial:

y = exp(x) = ex

La función exponencial es la inversa de la función logartimo natural

• log(exp(x)) = x, ∀x
• exp(log(x)) = x, x > 0

• log(y) = β0 + β1x es equivalente a y = exp(β0 + β1x)
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Suma
Si {xi | i = 1, 2, . . . , n} denota una secuencia de n números, la suma se escribe

x1 + x2 + . . .+ xn =
n∑

i=1

xi

Propiedades: Para cualquier constante c,

•
∑n

i=1 c = nc

•
∑n

i=1 cxi = c
∑n

i=1 xi

– Si una variable en la suma no tiene sub́ındice, sale de la suma

Cuidado: Si {(xi, yi) | i = 1, 2, . . . , n} es un conjunto de n pares de números,

n∑
i=1

xiyi no se simplifica,
n∑

i=1

xi

yi
̸=
∑n

i=1 xi∑n
i=1 yi

y
n∑

i=1

x2
i ̸=

(
n∑

i=1

xi

)2
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Estad́ıstico descriptivo

Un estad́ıstico descriptivo resume numérica o gráficamente un conjunto de

datos para describir sus caracteŕısticas de forma concisa

Los estad́ısticos descriptivos incluyen:

• Medidas de tendencia central (media, mediana, moda)

• Medidas de variabilidad (rango, varianza, desviación estándar)

• Medidas de posición (cuartiles, percentiles)

• Gráficos (histograma, diagrama de dispersión, gráfico circular)
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Medidas de Tendencia Central
Media o promedio muestral

Media o promedio muestral:

x̄ =
1

n

n∑
i=1

xi

Propiedades:

•
∑n

i=1(xi − x̄) = 0

•
∑n

i=1(xi − x̄)2 =
∑n

i=1 xi (xi − x̄) =
∑n

i=1 x
2
i − n(x̄)2
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Medidas de Tendencia Central
Mediana muestral

La mediana es el valor medio de una secuencia ordenada de n números

• Separa la mitad superior de la mitad inferior

Pasos para obtener la mediana:

• Los n números se ordenan de menor a mayor

• Si n es impar, se reporta el valor que está en el centro

• Si n es par, se reporta el promedio de los dos valores que están en el centro

Caracteŕısticas:

• Media permite hacer operaciones

• Mediana es menos sensible a cambios en los valores extremos
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Medidas de posición
Cuartiles

Los cuartiles son valores que dividen una secuencia de números ordenada de

forma ascendente en 4 partes iguales

• El primer cuartil (Q1) indica el valor debajo del cual se encuentran 25% de

las observaciones

• El segundo cuartil (Q2 o mediana) divide los datos en dos partes iguales

• El tercer cuartil (Q3) indica el valor debajo del cual se encuentran 75% de

las observaciones
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Medidas de posición
Percentiles

Los percentiles son valores que dividen una secuencia de números ordenada de

forma ascendente en 100 partes iguales

• Ej. El percentil 20 (P20), es el valor debajo del cual se encuentran 20% de

las observaciones

• P25 = Q1

• P50 = Q2 = Mediana

• P75 = Q3
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Repaso de Probabilidad
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Variables aleatorias

Experimento: Procedimiento que se puede repetir y que tiene un conjunto de

resultados aleatorios bien definidos

• Ej. Lanzar una moneda n veces y contar el número de caras

Variable aleatoria: Valor numérico asignado al resultado de un experimento

• Permite el cálculo de probabilidades

• Se denotan con mayúsculas y el resultado particular con minúsculas (X ̸= x)
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Variables aleatorias discretas
X es discreta si toma valores numéricos finitos (o infinitamente contables) y cada

valor está asociado con una probabilidad: pj = P (X = xj) , j = 1, 2, . . . , k

Ejemplo

La variable aleatoria Bernoulli (o binaria) toma los valores 1 (éxito) o 0 (fracaso)

• X ∼ Bernoulli(p),P (X = 1) = p y P (X = 0) = 1− p

La función de masa de probabilidad (fmp) resume la información de una

variable aleatoria discreta: fX(xj) = pj, j = 1, 2, . . . , k

Propiedades de la fmp:

• Valores están entre 0 y 1 para todos los posibles eventos

• La suma de todos los valores de la fmp siempre es igual a 1 (
∑k

i=1 pj = 1)
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Variables aleatorias continuas
X es continua si toma cualquier valor en los números reales con probabilidad 0

La función de densidad de probabilidad (fdp) proporciona información sobre

los valores que toma una variable aleatoria continua:

P (a ≤ X ≤ b) =

∫ b

a

fX(x)dx

• Área bajo la fdp entre los puntos a y b (a < b)

• Probabilidad de que X caiga entre a y b

Propiedades de la fdp:

• Valores están entre 0 y 1 para todos los posibles eventos

• El área total bajo la fdp siempre es igual a 1 (
∫
fX(x)dx = 1)
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Variables aleatorias continuas
fda

La función de distribución acumulada (fda) de una variable aleatoria X es:

F (X) = P (X ≤ x)

• Como es una probabilidad, siempre está entre 0 y 1

• Es una función de X no decreciente

Propiedades de la fda:

• Para cualquier número c, P (X > c) = 1− F (c)

• Para cualesquier números a < b, P (a ≤ X ≤ b) = F (b)− F (a)
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Vectores aleatorios

En econometŕıa, nos interesa cómo una variable aleatoria Y se relaciona con

otras variables aleatorias

• Cómo se comporta Y cuando las otras están sujetas a una condición

– Ej. El valor de otra variable aleatoria es conocido

Un vector aleatorio se puede ver como un conjunto de variables aleatorias

• La distribución del vector aleatorio se denomina distribución conjunta

• A la distribución de cada componente se le denomina distribución marginal
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Distribuciones conjuntas
La distribución conjunta de 2 variables aleatorias discretas X y Y está descrita

por la fdp conjunta de (X, Y): fXY (x, y)

• Caso discreto: fXY (x, y) = P (X = x,Y = y)

Las variables aleatorias X y Y son independientes si y solo si

fXY (x, y) = fX (x) fY (y) , ∀x, y,
de lo contrario son dependientes

• Independencia: Conocer el valor de una, no afecta la probabilidad de la otra

– Ej. Lanzar una moneda varias veces vs sacar canicas de una bolsa

• fX (x) y fY (y) se conocen como las fdp marginales de X y Y

• Caso discreto: P (X = x,Y = y) = P (X = x)P (Y = y)



Matemáticas Probabilidad Estad́ıstica Econometŕıa

Distribuciones condicionales

La fdp condicional resume la distribución condicional de Y dado X:

fY|X (y | x) = fXY (x, y)

fX (x)
, ∀x, fX (x) > 0

Si X y Y son independientes,

fY|X (y | x) = fY (y)

y

fX|Y (x | y) = fX (x)
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Caracteŕısticas de las funciones de distribución

Utilizamos números o funciones (momentos) para capturar ciertas caracteŕısticas

• Medidas de tendencia central: Formas de medir el centro de la distribución

– Esperanza o valor esperado, mediana

• Medidas de dispersión: Miden qué tan lejos del centro están los valores

– Varianza, desviación estándar

• Medidas de asociación: Miden la dependencia entre dos variables aleatorias

– Covarianza, correlación, esperanza condicional

En econometŕıa, utilizamos las propiedades de estos momentos, en lugar de

calcularlos para distribuciones particulares (como en probabilidad)
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Valor esperado o media poblacional (E)
Promedio ponderado de todos los valores de la variable aleatoria X

µX = µ = E (X) =
k∑

j=1

xjfX (xj) o E (X) =

∫ ∞

−∞
xfX (x) dx

Propiedades (usadas en econometŕıa):

• Para cualquier constante c, E (c) = c

• Para cualesquier constantes a y b, E (aX+ b) = aE (X) + b

• Para constantes {a1, a2, . . . , an}, E (
∑n

i=1 aixi) =
∑n

i=1 aiE (xi)

– Si ai = 1, ∀ i, la esperanza de la suma es la suma de las esperanzas

Preguntas

¿Cuál es el valor esperado de lanzar una moneda? ¿Y el de un dado?
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Mediana (med)

El cálculo de la mediana depende del tipo de variable aleatoria

• Discreta: Ordenar de menor a mayor y escoger el valor medio

• Continua: Mitad del área a la izquierda y mitad a la derecha

Ambas µX = E (X) y med(X) son medidas válidas del centro de la distribución

• µX ̸= med(X) en general

• µX = med(X) si la distribución es simétrica alrededor del valor µ

f (µ+ x) = f (µ− x) , ∀x
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Varianza (Var)
Mide la distancia esperada de X a su media:

σ2
X = σ2 = Var (X) = E

[
(X− µ)2

]
= E

(
X2
)
− µ2

Propiedades:

• La varianza es no negativa

• Para cualquier constante c, Var (c) = 0

• Para cualesquier constantes a y b,

– Var (aX+ b) = a2Var (X)

Sumar una constante, no altera la varianza

Multiplicar por una constante, incrementa la varianza

– Var (aX+ bY) = a2Var (X) + b2Var (Y) + 2abCov (X,Y)

– Si Cov (X,Y) = 0, Var (X+Y) = Var (X−Y) = Var (X) +Var (Y)



Matemáticas Probabilidad Estad́ıstica Econometŕıa

Desviación estándar (desvest)

σX = σ = desvest (X) = +
√

Var (X)

Propiedades:

• Para cualquier constante c, desvest (c) = 0

• Para cualesquier constantes a y b, desvest (aX+ b) = |a|desvest (X)
• desvest está en las mismas unidades de medición que X (a diferencia de Var)

Pregunta

Si el salario promedio en miles de pesos es 52.3 y su desvest es 14.6, ¿cuál es el

salario medio y su desvest en pesos?

Variable aleatoria estandarizada: Z = (X− µ)/σ
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Covarianza poblacional (Cov)
Mide la dependencia lineal entre 2 variables aleatorias

σXY = Cov (X,Y) = E [(X− µX)(Y − µY)] = E (XY)− µXµY

• µX = E (X), µY = E (Y)

• Si σXY > 0, en promedio X > µX y Y > µY, o X < µX y Y < µY

Propiedades:

• Si X y Y son independientes, entonces Cov (X,Y) = 0
– Pero Cov (X,Y) = 0 ≠⇒ X y Y son independientes (ej. Y = X2)

– Entonces, correlación cero e independencia no son lo mismo

• Para cualesquier constantes a1, a2, b1 y b2,

Cov (a1X+ b1, a2Y + b2) = a1a2Cov (X,Y)

• Depende de las unidades de medida de las variables aleatorias
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Correlación poblacional (Corr)
Mide la dependencia lineal pero no depende de las unidades de medida

ρXY = Corr (X,Y) =
Cov (X,Y)

desvest (X) desvest (Y)
=

σXY

σXσY

Propiedades:

• −1 ≤ ρXY ≤ 1, ∀X, Y
• Si X = Y, Cov (X,Y) = Var (X) = σ2

X y ρXY = 1

• Si ρXY = 0, X y Y no correlacionadas (no hay relación lineal entre X y Y)

• Si ρXY ≈ 1, la relación lineal es fuerte

• Para cualesquier constantes a1, a2, b1 y b2,

– Si a1a2 > 0, Corr (a1X+ b1, a2Y + b2) = Corr (X,Y)

– Si a1a2 < 0, Corr (a1X+ b1, a2Y + b2) = −Corr (X,Y)
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Esperanza (o media) condicional
Una variable Y puede estar relacionada a una variable X de forma no lineal

La fdp condicional captura esa relación pero no se puede resumir en un solo valor

numérico porque la distribución de Y dado X = x depende de x

La esperanza condicional captura la relación no lineal entre Y y X

• Caso discreto: E (Y | X = x) =
∑m

j=1 yjfY|X (yj | X)
• Promedio ponderado de posibles valores de Y dado que X = x

• Si cambia x, cambia E (Y | X) porque es una función de x

En econometŕıa, capturamos la relación con funciones simples

• E (Y | X) = α + βx

• E (Y | X) = 10/x
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Esperanza condicional
Propiedades:

• E [c (X) | X] = c (X), ∀c (X)
– Funciones de X son como constantes

• Para funciones a (X) y b (X),

E [a (X)Y + b (X) | X] = a (X)E (Y | X) + b (X)

• Si X y Y son independientes, E (Y | X) = E (Y) =⇒ Cov (X,Y) = 0 (⇍)

– No depende de X

• Ley de las esperanzas iteradas: E [E (Y | X)] = E (Y)

– Si E [E (U | X)] = E (U) y E (U | X) = 0, E (U) = 0, entonces

E (U | X) = E (U) =⇒ Cov (X,U) = 0
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Modelos probabiĺısticos

Distribuciones de probabilidad que dependen de parámetros

• Diferentes valores de los parámetros, generan diferentes distribuciones

Distribuciones comúnmente usadas en econometŕıa:

• Distribución normal y normal estándar

• Distribución χ2

• Distribución t

• Distribución F

Visualizador de distribuciones: Aqúı

https://seeing-theory.brown.edu/probability-distributions/index.html
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Distribución normal (N)

X ∼ N
(
µ, σ2

)
, donde µ = E (X) y σ2 = Var (X)

• Distribución simétrica alrededor de µ

• Si Y = log(X) tiene una distribución N, X tiene una distribución lognormal
• Z ∼ N (0, 1) tiene una distribución normal estándar

– ϕ(z) denota la fdp y Φ(z) denota la fda, entonces Φ(z) = P (Z ≤ z)

Podemos usar Φ(z) para calcular la probabilidad de cualquier evento para Z

• P (Z > z) = 1− Φ(z)

• P (Z < −z) = P (Z > z)

• P (a ≤ Z ≤ b) = Φ(b)− Φ(a)

• P (|Z| > c) = P (Z > c) + P (Z < −c) = 2 [1− Φ(c)] ∀ c > 0
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Distribución N
Propiedades:

• Si X ∼ N (µ, σ2), X−µ
σ

∼ N (0, 1)

• Si X ∼ N (µ, σ2), aX+ b ∼ N (aµ+ b, a2σ2)

• Si X y Y tienen una distribución conjunta normal, entonces X y Y son

independientes ⇐⇒ Cov (X,Y) = 0

• Cualquier combinación lineal de variables aleatorias independientes con la

misma distribución normal, tiene una distribución normal

• Si Yi
iid∼ N (µ, σ2), i = 1, 2, . . . , n, Ȳ ∼ N

(
µ, σ

2

n

)
Ejercicio

Encuentra las probabilidades P (X ≤ 6) y P (X > 4) si X ∼ N (5, 4)
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Distribución χ2

Si Zi
iid∼ N (0, 1), i = 1, 2, . . . , n, y X =

∑n
i=1 Z

2
i , entonces

X ∼ χ2
n

• Distribución no negativa y no simétrica

– n son los grados de libertad

• La forma de la distribución cambia con n

• Se utiliza en la construcción de las distribuciones t y F
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Distribución t

Si Z ∼ N (0, 1) y X ∼ χ2
n son independientes, entonces

T =
Z√
X/n

∼ tn

• Forma similar a la distribución normal estándar, pero más dispersa

– Valores extremos de T son más probables que los de Z

– n son los grados de libertad

– Cuando n → ∞, tn → Z (diferencia entre ambas distribuciones disminuye)

• Se utiliza para pruebas de hipótesis de un parámetro
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Distribución F

Si X1 ∼ χ2
k1

y X2 ∼ χ2
k2

son independientes, entonces

F =
X1/k1
X2/k2

∼ Fk1,k2

• Distribución no negativa

– k1 y k2 son los grados de libertad

– Orden de k1 y k2 es importante

• Se utiliza para hacer pruebas de hipótesis de varios parámetros

– k1 es el número de restricciones en los parámetros

– k2 es el número de observaciones menos los parámetros estimados

• t2n ∼ F1,n
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Repaso de Estad́ıstica
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Inferencia estad́ıstica

La estad́ıstica inferencial estudia la estimación (puntual, por intervalos) de

parámetros y pruebas de hipótesis sobre esos parámetros

• Requiere identificar la población de interés y especificar el modelo (fdp)

Ejemplo

Variable aleatoria Y con fdp conocida, f (y; θ), pero parámetro θ desconocido

• Diferentes valores de θ dan lugar a diferentes distribuciones de probabilidad

Pregunta

¿Cuáles son los parámetros en Yi ∼ Bernoulli (p) y Yi ∼ N (µ, σ2)?
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Muestra aleatoria

Si Y1,Y2, . . . ,Yn son variables aleatorias independientes con la misma fdp

f (y; θ), entonces {Y1,Y2, . . . ,Yn} es una muestra aleatoria de la población

representada por f (y; θ) y se denota como i.i.d.

• Datos observados cambian con cada muestra

Tipo de muestreo común en estad́ıstica

• Estimadores puntuales (propiedades)

– Muestras finitas: falta de sesgo, eficiencia

– Muestras grandes: consistencia, distribución asintótica

• Estimación por intervalos

• Pruebas de hipótesis
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Estimadores y estimados
Dada {Y1,Y2, . . . ,Yn} de una fdp con parámetro θ (desconocido), un estimador

W de θ es una regla que asigna a cada muestra particular un valor para θ

W = θ̂ = h (Y1,Y2, . . . ,Yn) vs w = θ̂ = h (y1, y2, . . . , yn)

• W es una v.a. (tiene fdp, E (·), Var (·)) y se llama estimador puntual

• w es un número y se llama estimado puntual

Ejemplo

Dada {Y1,Y2, . . . ,Yn} de una población con media µ y varianza σ2, el

estimador de µ es Ȳ = 1
n

∑n
i=1Yi y el de σ2 es S2 = 1

n−1

∑n
i=1

(
Yi − Ȳ

)2
. Para

una muestra particular {y1, y2, . . . , yn}, el estimado de Ȳ es ȳ = y1+y2+...+yn
n

y el

de S2 es s2 = (y1−ȳ)2+(y2−ȳ)2+...+(yn−ȳ)2

n−1
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Distribución muestral

La distribución de probabilidad del estimador W se llama distribución muestral

• Objeto de estudio de la estad́ıstica matemática

• Énfasis en caracteŕısticas de la distribución muestral de W para evaluarlo

como estimador de θ

La distribución muestral depende de la distribución de Y y de la función h

• La distribución de Y está fuera de nuestro control

• Pero podemos escoger la función h (supuestos, método de estimación)

Hay muchas formas de generar estimadores

• Queremos propiedades que nos permitan descartar los irrelevantes
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Falta de sesgo (insesgadez)

El sesgo de un estimador W de θ se define como

Sesgo (W) = E (W)− θ

• W es un estimador insesgado de θ si E (W) = θ, ∀ θ
– Promedio de infinitas muestras da θ, aunque en la práctica una muestra

Ejemplo

E
(
Ȳ
)
= E

(
1
n

∑n
i=1Yi

)
= 1

n
nµ = µ y E (S2) = σ2

Pregunta

Si W = Y1, entonces E (Y1) = µ, ¿es útil?
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Varianza muestral

Podemos tener 2 estimadores insesgados, pero uno con menor dispersión

• ¿Cuál preferimos?

La varianza muestral es la varianza de un estimador W: Var (W)

• Número (desconocido) que mide dispersión de la distribución muestral de W

Ejemplo

Var
(
Ȳ
)
= Var

(
1
n

∑n
i=1Yi

)
= 1

n2nσ
2 = σ2

n
→ 0 cuando n → ∞

Pregunta

Si W = Y1, ¿Var (Y1)? ¿Se prefiere W = Ȳ o W = Y1 para estimar µ?
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Eficiencia relativa

Si W1 y W2 son estimadores insesgados de θ, W1 es eficiente relativo a W2 si

• Var (W1) ≤ Var (W2) ∀ θ, y
• Var (W1) < Var (W2) para al menos un valor de θ

Restringimos nuestra atención a estimadores insesgados generalmente

Pero para comparar estimadores sesgados usamos el error cuadrático medio

E
[
(W − θ)2

]
= Var (W) + [Sesgo (W)]2

• Ej. Tirador de flechas a distancia (sesgo vs eficiencia)
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Consistencia
Razonable requerir que el procedimiento de estimación mejore conforme n → ∞
• Análisis asintótico aproxima la distribución muestral de W con base en n

Si Wn es un estimador de θ obtenido de una muestra aleatoria Y1,Y2, . . . ,Yn,

Wn es un estimador consistente de θ si ∀ ε > 0,

P (|Wn − θ| > ε) → 0 cuando n → ∞

• Se dice que θ es el ĺımite en probabilidad de Wn: plim (Wn) = θ

• La distribución de Wn se concentra cada vez más alrededor de θ

• Consistencia es un requerimiento ḿınimo de un estimador

Si Wn es un estimador insesgado de θ y Var (Wn) → 0 cuando n → ∞,

entonces plim (Wn) = θ; es decir, Wn es consistente
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Ley de los Grandes Números (LGN)

Sean Y1,Y2, . . . ,Yn variables aleatorias i.i.d con media µ, entonces

plim
(
Ȳn

)
= µ

• Ȳn es consistente para µ

• Podemos acercarnos a µ con una muestra suficientemente grande

Se puede combinar con las propiedades de los plim para mostrar que diferentes

estimadores (funciones de otros) son consistentes

Ejemplo

Sn =
√

S2
n desviación estándar muestral no es insesgado pero es consistente
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Normalidad asintótica

Necesitamos la forma de la distribución muestral de Wn para

• Construir intervalos de confianza

• Hacer pruebas de hipótesis

Si {Zn | n = 1, 2, . . .} es una secuencia de variables aleatorias tal que ∀ z,
P (Zn ≤ z) → Φ (z) cuando n → ∞, entonces

Zn
a∼ N (0, 1)

• Se dice que Zn tiene una distribución normal estándar asintótica

En muestras grandes, la distribución muestral de muchos estimadores es

aproximadamente normal
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Teorema del Ĺımite Central (TLC)
Sea {Y1,Y2, . . . ,Yn} una muestra aleatoria con media µ y varianza σ2, entonces

Zn =
Ȳn − µ

σ/
√
n

a∼ N (0, 1)

• El promedio de una m.a. de cualquier población (con varianza finita),

cuando se estandariza, tiene una distribución normal estándar asintótica

• Muchos estimadores se pueden escribir como funciones de promedios

muestrales, por lo que podemos aplicar la LGN y el TLC

Ejemplo

Ȳn−µ
Sn/

√
n
es un estad́ıstico que es asintóticamente normal

De aqúı en adelante, ya no se incluye el sub́ındice n



Matemáticas Probabilidad Estad́ıstica Econometŕıa

Métodos de estimación puntual

Métodos de estimación de parámetros comúnmente usados:

• Método de momentos

– Momento poblacional en función de parámetro se iguala al muestral

• Máxima verosimilitud

– Máximo de una función tal que los datos observados son los más probables

• Ḿınimos cuadrados

– Encuentran la ĺınea que ajusta mejor la dirección general de los datos

Estos métodos producen estimadores con buenas propiedades

• Insesgados, eficientes, consistentes
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Estimación por intervalos (de la media poblacional)

¿Qué tan cerca está un estimado del parámetro θ?

• No sabemos porque no conocemos θ, pero podemos usar probabilidades

• La desviación estándar muestral evalúa la incertidumbre de un estimador

Sea {Y1,Y2, . . . ,Yn} una muestra aleatoria de N (µ, σ2). Si usamos Ȳ y S2,

Ȳ − µ

S/
√
n
∼ tn−1

Si c es el percentil 97.5 de la distribución tn−1 tal que P (−c < tn−1 < c) = 0.95

P
(
−c <

Ȳ − µ

S/
√
n
< c

)
= P

(
Ȳ − c

S√
n
< µ < Ȳ + c

S√
n

)
= 0.95
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Estimación por intervalos

El siguiente intervalo de confianza (IC) contiene a µ 95% de las veces[
Ȳ − c

S√
n
, Ȳ + c

S√
n

]
• Para una muestra, el IC es

[
ȳ − c s√

n
, ȳ + c s√

n

]
Si cα denota el percentil 100(1− α) de la distribución tn−1, entonces el IC para

una muestra particular es
[
ȳ − cα/2

s√
n
, ȳ + cα/2

s√
n

]
• cα requiere escoger α y conocer los grados de libertad n− 1

• cα se puede obtener de las tablas de la distribución



Matemáticas Probabilidad Estad́ıstica Econometŕıa

Estimación por intervalos

Dado que desvest (ȳ) = σ√
n
, la variable aleatoria S√

n
es el error estándar de Ȳ

• Si definimos el error estándar del estimado puntual de ȳ como

errest (ȳ) = s√
n
, podemos reescribir el IC como

[
ȳ ± cα/2 × errest (ȳ)

]
• Dado que tn → N (0, 1), para α = 0.05, cα/2 → 1.96 cuando n → ∞,

entonces la regla general para un IC al 95% es [ȳ ± 2× errest (ȳ)]

• Cuando la población tenga una distribución no normal, pero un tamaño de
muestra grande, podemos usar el TLC para aproximar la distribución de Ȳ

– Un IC al 95% aproximado es [ȳ ± 1.96× errest (ȳ)]
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Dispersión en distribución poblacional y muestral

• σ es la desviación estándar poblacional (desconocida) de Y

• s = σ̂ es el estimado de σ

• desvest
(
Ȳ
)
= σ√

n
es la desviación estándar muestral de Ȳ

– desvest
(
Ȳ
)
→ 0 cuando n → ∞

– El estimador Ȳ de µ se vuelve más preciso conforme n → ∞
• d̂esvest

(
Ȳ
)
= errest

(
Ȳ
)
= s√

n
es el error estándar de Ȳ

– errest es un estimado de σ√
n

– Es lo que se usa para construir IC

– Es fundamental para pruebas de hipótesis
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Pruebas de hipótesis
Métodos para contestar preguntas binarias utilizando una muestra de datos

• ¿Qué tan fuerte es la evidencia en contra de una hipótesis?

Tipos de hipótesis:

• La hipótesis nula H0 se asume cierta hasta que los datos sugieran que hay

suficiente evidencia en favor de la hipótesis alternativa H1 o Ha

• Hay hipótesis alternativas de un lado (evidencia contra H0 en una sola

dirección) o de dos lados (cualquier desviación de H0)

Tipos de errores:

• Error tipo I. Rechazar H0 cuando es en realidad cierta

• Error tipo II. No rechazar H0 cuando es en realidad falsa
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Pruebas de hipótesis

Al decidir sobre H0, podemos acertar o equivocarnos y nunca sabremos cuál fue

• Pero podemos calcular la probabilidad de cometer cualquiera de los 2 errores

Construimos las pruebas tal que la probabilidad de cometer error tipo I sea baja

• El nivel de significancia de la prueba α es la probabilidad del error tipo I

– α = P (Rechazar H0 | H0)

– Valores comunes para α son {0.1, 0.05, 0.01}
– Cuantifica la tolerancia de cometer error tipo I

• Minimizamos el error tipo II al maximizar el poder de la prueba

– π (θ) = P (Rechazar H0 | θ) = 1− P (Tipo II | θ)
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Pruebas de hipótesis
Para probar H0 contra Ha, se necesita un estad́ıstico de prueba y un valor cŕıtico

• Un estad́ıstico de prueba T es una variable aleatoria que asigna un valor a
cada muestra

– Cuantifica cuánto se desv́ıan los datos observados de lo esperado bajo H0

– Diferencia con estimador: Un estimador no depende de θ

– Para una muestra particular es t

• Tras definir el nivel de significancia α, encontramos el valor cŕıtico c con

base en la distribución de T bajo el supuesto de que H0 es cierta

• La regla de rechazo determina cuándo H0 se rechaza al comparar el
estad́ıstico de prueba t contra un valor cŕıtico c

– Lenguaje: No se rechaza H0 (✓) vs se acepta H0 (✗)



Matemáticas Probabilidad Estad́ıstica Econometŕıa

Prueba de hipótesis de la media de una población normal
Prueba de un lado para µ de una población N (µ, σ2)

H0 : µ = µ0 (ej . µ0 = 0)

Ha : µ > µ0

Estad́ıstico t

T =
Ȳ − µ0

S/
√
n

∼ tn−1 =⇒ t =
ȳ − µ0

errest (ȳ)

Si α = 0.05, c se escoge tal que la probabilidad de error tipo I es 5%:

P (T > c | H0) = 0.05

Regla de rechazo: t > c, donde c es el percentil 100(1− α) de distribución tn−1
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Prueba de hipótesis de la media de una población normal

Ha Escoger c tal que Regla rechazo c percentil valor− p

µ > µ0 P (T > c | H0) = α t > c 100 (1− α) P (T > t)

µ < µ0 P (T < −c | H0) = α t < −c 100 (1− α) P (T < t)

µ ̸= µ0 P (|T | > c | H0) = α |t| > c 100
(
1− α

2

)
P (|T | > |t|)
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Prueba de hipótesis de la media de una población normal

Cuando la población no es normal pero n → ∞, por el TLC,

T =
Ȳ − µ0

S/
√
n

a∼ N (0, 1)

• t se calcula como antes pero se utilizan valores cŕıticos de N (0, 1)

Los IC se pueden usar para hacer PH de dos lados

H0 : µ = µ0

Ha : µ ̸= µ0

• Si µ0 /∈ IC , H0 se rechaza (depende del valor de α)
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Valores p
El valor p indica el nivel de significancia más alto para el que no se rechaza H0

• Asociado con el valor del estad́ıstico como nuestro valor cŕıtico

• Probabilidad de valores más extremos al valor del estad́ıstico si H0 es cierta

Ejemplo

Si H0 : µ = µ0, Ha : µ > µ0 y T
a∼ N (0, 1),

valor− p = P (T > t | H0) = 1− Φ (t) = 0.065

• Si α < 0.065, H0 no se rechaza . Si α > 0.065, H0 se rechaza

Valores p pequeños generalmente son evidencia en contra de H0

• Regla de rechazo: valor− p < α

• Permite hacer una prueba de hipótesis para cualquier nivel de significancia
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Relación con Econometŕıa
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Comentarios

Es importante considerar significancia tanto práctica como estad́ıstica

• Los estimados puntuales indican dirección (signo) y magnitud

Para entender conceptos en inferencia estad́ıstica, es importante distinguir entre

• Estimador W (variable aleatoria) y estimado w (número)

En econometŕıa, la convención es utilizar

• θ para un parámetro poblacional, y

• θ̂ tanto para el estimador como para el estimado

– El contexto indica si se trata del estimador (propiedades estad́ısticas) o del

estimado (número)


	Repaso de Matemáticas
	Repaso de Probabilidad
	Repaso de Estadística
	Relación con Econometría

