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Econometria en una diapositiva

Planteamos un modelo econométrico para abordar una pregunta de interés

e Buscamos explicar una variable en términos de otras
Para estimar los parametros del modelo, utilizamos variables aleatorias

e Esas variables aleatorias se llaman estimadores

e Los valores particulares de esas variables aleatorias se obtienen de los datos
En econometria, utilizamos los estimadores para:

e Estudiar sus propiedades (ej. valor promedio)

e Hacer inferencia sobre los pardmetros del modelo

Todo con el fin de responder nuestra pregunta de investigacion
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Notacion

Letras griegas

Letras griegas (mintsculas) cominmente usadas:

a alfa U
£ beta H )
T pi
v gama ) 1o
d delta (mayds. A) o sigma (mayds. ¥)
g épsilon & yus.
¢ fi (mayis. )
0 teta .
A lambda X
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Notacion

Simbolos

Simbolos matemdticos cominmente usados:

cambio, variacién )
converge a, tiende a

m x 10", mEn m por diez elevado a n

suma

no es igual .
7 . & . ~ se distribuye
~ aproximadamente igual .
— implica
YV  para todo i
.. = no implica
| tal que, condicional ) P )
== si y solo si
A
> —
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Proporciones y Porcentajes

Una proporcion es la forma decimal de un porcentaje (ej. 28% a 0.28)
Un porcentaje se obtiene al multiplicar una proporcién por 100 (ej. 0.82 a 82%)
Cambios:

e Cambio en cantidad (cambio absoluto): =1 —zo = Az (ej. de 10 a 12, 2)

e Cambio proporcional (cambio relativo): == = é—f (ej. de 10 a 12, 0.2)

e Cambio porcentual: %Az = 100(2%) (ej. de 10 a 12, 20%)
Cuando x estd en porcentaje, hay 2 formas de describir el cambio:

e Cambio en puntos porcentuales: Ax (ej. de 4% a 6%, 2 p.p.)

e Cambio porcentual: %Ax (). de 4% a 6%, 50%)

Un punto base es la centésima parte de 1%, expresa cambios en tasas de interés
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Funciones lineales

Una variable

y es una funcién lineal de una variable x si
y = 0o+ bz,
donde [y es el intercepto y (3; es la pendiente
e La relacidn lineal entre x y y implica que Ay = 1Ax

e Ax =1 genera el mismo Ay sin importar el valor inicial

e [ es el efecto marginal (constante) de z sobre y

Una linea recta tiene la misma pendiente (Ay/Ax) en todos sus puntos
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Funciones lineales

Dos variables

y es una funcién lineal de dos variables x; y x5 si

y = fo+ prz1 + Para,
donde 3y es el intercepto, y B1 y (> son las pendientes

e y=[pcuandozr; =0y 2, =0

La relacién lineal implica que Ay = 1Az + BAx;
Si Az, =0, Ay = f1Az; = Sy = 2¥ (pendiente en la direccién de 1)

x1

Si Az; =0, Ay = BoAxy = = 2

Z2

P es el efecto parcial de x; sobre y (cémo cambia y con z; cuando x; fijo)
e (3, es el efecto parcial de x, sobre y
D



Combinaciones lineales

Si ¢ y ¢ son 2 constantes, p y g son 2 variables, entonces
m=c1p + C2q
e La nueva variable m es una combinacidn lineal perfecta de py g
Ejemplos

eci=1lyc=1
e c;=1000yc,=0

Misma idea se puede extender a k£ constantes y k variables




Funciones No Lineales

Funciones no lineales:

e El cambio en y para un cambio dado en x depende del valor inicial de x

e Permiten capturar rendimientos marginales decrecientes o crecientes

— Insumo aumenta manteniendo otros fijos, produccién adicional disminuye
— Todos los insumos aumentan, produccién aumenta en mayor proporcién

e Comunmente usadas:

— Cuadrética
— Logaritmo
— Exponencial
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Funcidn cuadratica

y es una funcién cuadratica de x si

y = f(z) = Bo + Bz + Boa®
Su derivada es:

f/(l’):ﬁ1+252$*:0 _— .Z'*:—2B_512

Sip; >0y B <0,
e ¥ es un maximo
e Efecto marginal decreciente de x sobre y

— Efecto puede ser negativo: Para z > z*, incrementos en x reducen y
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Logaritmo natural
La funcién logaritmo natural:
y =In(z) = log(xz), x>0
¢ Rendimientos marginales decrecientes, pero el efecto nunca es negativo
— Pendiente — 0
e Es (til para hacer aproximaciones (ej. rendimientos accionarios)
— log(1+ x) ~ x cuando z ~ 0
— log(z) ~x — 1 cuando z ~ 1
La diferencia de logaritmos se usa para aproximar cambios cuando fE—; ~ 1
o Alog(z) = log(z1) — log(zo) = log(3}) ~ 3+ — 1 = #1250 = %:
e %Az ~ 100 x Alog(z)
D
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Logaritmo natural
Elasticidad

Formas de medir la sensibilidad de y a las variaciones de x
e Pendiente: Depende de unidades de medicién, no constante en curvas
e Elasticidad: Las variables no necesitan estar en las mismas unidades

La elasticidad mide el cambio porcentual en y cuando x aumenta 1%
__Byz _ %Ay Alog(y)
T Azy %Az Alog(z)

e Si|e| < 1, la curva es ineldstica

e Si |e| =1, la curva es isoeldstica

e Si|e| > 1, la curva es eldstica
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Logaritmo natural
Elasticidad

La funcién log permite especificar modelos con elasticidad constante

08(s) = o + 1 log(e) — 1 = 5 o)

e (31 es la elasticidad de y con respecto a x
e Modelo ampliamente usado en economia empirica

e En y = [y + Siz, la elasticidad no es constante, depende de =
Pregunta

i Cudl es la elasticidad (%%) de una linea recta?
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Funciéon exponencial

Funcién exponencial:
y = exp(z) = e"
La funcidn exponencial es la inversa de la funcién logartimo natural
o log(exp(z)) =z, Vz
e exp(log(z)) =z, x>0
e log(y) = fBo + S1x es equivalente a y = exp(5o + (1)
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Suma

Si{x; |i=1,2,...,n} denota una secuencia de n nimeros, la suma se escribe

$1+x2+...+xn:Za¢;
i=1

Propiedades: Para cualquier constante c,

o 22:1 c=nc
b zz‘:l CTi = CZi:l Li

— Si una variable en la suma no tiene subindice, sale de la suma

Cuidado: Si {(z;,v:) |i=1,2,...,n} es un conjunto de n pares de nﬂmeros,

nyz no se simplifica, Z 7£ Zx #* Zx,

Z—l y’ i=1
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Estadistico descriptivo

Un estadistico descriptivo resume numérica o graficamente un conjunto de
datos para describir sus caracteristicas de forma concisa

Los estadisticos descriptivos incluyen:

Medidas de tendencia central (media, mediana, moda)

Medidas de variabilidad (rango, varianza, desviacién estandar)

Medidas de posicidn (cuartiles, percentiles)

Graéficos (histograma, diagrama de dispersion, grafico circular)



Medidas de Tendencia Central

Media o promedio muestral

Media o promedio muestral:

Propiedades:
® Z:-Lzl(l‘,' - j) =0
o Yl — ) =3 @i (i — T) = 30 af — n(T)?

1= !



Medidas de Tendencia Central

Mediana muestral

La mediana es el valor medio de una secuencia ordenada de n ndimeros
e Separa la mitad superior de la mitad inferior

Pasos para obtener la mediana:
e Los n nimeros se ordenan de menor a mayor
e Sin es impar, se reporta el valor que esta en el centro

e Sin es par, se reporta el promedio de los dos valores que estdn en el centro
Caracteristicas:

e Media permite hacer operaciones

e Mediana es menos sensible a cambios en los valores extremos
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Medidas de posicion

Cuartiles

Los cuartiles son valores que dividen una secuencia de nimeros ordenada de
forma ascendente en 4 partes iguales

e El primer cuartil (Q1) indica el valor debajo del cual se encuentran 25% de
las observaciones

e El segundo cuartil (Q2 o mediana) divide los datos en dos partes iguales

e El tercer cuartil (Q3) indica el valor debajo del cual se encuentran 75% de
las observaciones
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Medidas de posicion

Percentiles

Los percentiles son valores que dividen una secuencia de niimeros ordenada de
forma ascendente en 100 partes iguales

e Ej. El percentil 20 (P20), es el valor debajo del cual se encuentran 20% de
las observaciones

e P25 =Q1
e P50 = Q2 = Mediana
e P75 = Q3



Probabilidad

Repaso de Probabilidad
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Variables aleatorias

Experimento: Procedimiento que se puede repetir y que tiene un conjunto de
resultados aleatorios bien definidos

e Ej. Lanzar una moneda n veces y contar el nimero de caras
Variable aleatoria: Valor numérico asignado al resultado de un experimento
e Permite el calculo de probabilidades

e Se denotan con mayusculas y el resultado particular con minusculas (X # x)
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Variables aleatorias discretas
X es discreta si toma valores numéricos finitos (o infinitamente contables) y cada
valor esta asociado con una probabilidad: p; =P (X =x;),j =1,2,...,k
Ejemplo
La variable aleatoria Bernoulli (o binaria) toma los valores 1 (éxito) o 0 (fracaso)
e X ~ Bernoulli(p),P(X=1)=pyP(X=0)=1—-p
La funcién de masa de probabilidad (fmp) resume la informacién de una

variable aleatoria discreta: fx(z;) =p;, j=1,2,...,k
Propiedades de la fmp:
e Valores estan entre 0 y 1 para todos los posibles eventos

e La suma de todos los valores de la fmp siempre es igual a 1 (3.5, p; = 1)
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Variables aleatorias continuas

X es continua si toma cualquier valor en los nimeros reales con probabilidad 0
La funcién de densidad de probabilidad (fdp) proporciona informacién sobre
los valores que toma una variable aleatoria continua:

Pla<X<b)= /b fx(x)dx

e Area bajo la fdp entre los puntos a y b (a < b)
e Probabilidad de que X caiga entre a y b
Propiedades de la fdp:
e Valores estan entre 0 y 1 para todos los posibles eventos
e El drea total bajo la fdp siempre es igual a 1 ([ fx(z)dz = 1)
D
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Variables aleatorias continuas
fda

La funcién de distribucién acumulada (fda) de una variable aleatoria X es:
F(X)=P(X < 2)

e Como es una probabilidad, siempre estd entre 0 y 1
e Es una funcién de X no decreciente
Propiedades de la fda:
e Para cualquier nimero ¢, P(X >¢)=1— F(c)
e Para cualesquier nimeros a < b, P(a < X <b) = F (b) — F (a)
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Vectores aleatorios

En econometria, nos interesa cdmo una variable aleatoria Y se relaciona con
otras variables aleatorias

e Cémo se comporta Y cuando las otras estdn sujetas a una condicion

— Ej. El valor de otra variable aleatoria es conocido
Un vector aleatorio se puede ver como un conjunto de variables aleatorias
e La distribucién del vector aleatorio se denomina distribucién conjunta

e A la distribucidn de cada componente se le denomina distribucién marginal
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Distribuciones conjuntas
La distribucién conjunta de 2 variables aleatorias discretas X y Y estd descrita
por la fdp conjunta de (X, Y): fxy (z,v)
e Caso discreto: fxy (z,y) =P(X=z,Y =vy)

Las variables aleatorias X y Y son independientes si y solo si

fXY (xvy) - fX (‘(E) f;{ (y) ) VI', Y,
de lo contrario son dependientes

e Independencia: Conocer el valor de una, no afecta la probabilidad de la otra

— Ej. Lanzar una moneda varias veces vs sacar canicas de una bolsa
e fx(z)y fy (y) se conocen como las fdp marginales de X y Y
e Casodiscreto: P(X=2z,Y =y)=PX=2)P(Y =y)
D
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Distribuciones condicionales

La fdp condicional resume la distribucién condicional de Y dado X:
fXY (I’, y)

&(CL’) , Vo, fx($)>0

Frix (y | ) =
Si X'y Y son independientes,

hx(y|z)=H(y)

Ky (2 | y) = K& (v)
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Caracteristicas de las funciones de distribucion

Utilizamos ndmeros o funciones (momentos) para capturar ciertas caracteristicas
e Medidas de tendencia central: Formas de medir el centro de la distribucién
— Esperanza o valor esperado, mediana
e Medidas de dispersién: Miden qué tan lejos del centro estan los valores
— Varianza, desviacién estandar
e Medidas de asociacién: Miden la dependencia entre dos variables aleatorias
— Covarianza, correlacion, esperanza condicional

En econometria, utilizamos las propiedades de estos momentos, en lugar de
calcularlos para distribuciones particulares (como en probabilidad)
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Valor esperado o media poblacional (E)

Promedio ponderado de todos los valores de la variable aleatoria X

MXZM:E(X):ijfX(xj) o E(X)z/_ooa;fx(x)dx

o0

Propiedades (usadas en econometria):
e Para cualquier constante ¢, E (¢) = ¢
e Para cualesquier constantes a y b, E (aX + b) = aE (X) + b
e Para constantes {a1, ao,...,a,}, E(O"", a;x;) = > 1) a;E ()
— Sia; =1, Vi, la esperanza de la suma es la suma de las esperanzas
Preguntas

i Cual es el valor esperado de lanzar una moneda? ;Y el de un dado?
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Mediana (med)

El cdlculo de la mediana depende del tipo de variable aleatoria
e Discreta: Ordenar de menor a mayor y escoger el valor medio
e Continua: Mitad del drea a la izquierda y mitad a la derecha
Ambas px = E (X) y med(X) son medidas vélidas del centro de la distribucién
e ux # med(X) en general
e ux = med(X) si la distribucién es simétrica alrededor del valor p
f(lu+tx)=Ff(p—x), YV
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Varianza (Var)

Mide la distancia esperada de X a su media:
ok =0 =Var(X) =E [(X — pn)’] =E (X?) — /*
Propiedades:
e La varianza es no negativa
e Para cualquier constante ¢, Var(c) =0
e Para cualesquier constantes a y b,
— Var (aX + b) = a?Var (X)
Sumar una constante, no altera la varianza
Multiplicar por una constante, incrementa la varianza
— Var (aX + bY) = a?Var (X) + b*Var (Y) + 2abCov (X, Y)
- SiCov(X,Y)=0, Var (X 4+ Y) = Var (X — Y) = Var (X) + Var (Y)
D
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Desviacién estandar (desvest)
ox = 0 = desvest (X) = ++/ Var (X)

Propiedades:
e Para cualquier constante ¢, desvest (¢) = 0

e Para cualesquier constantes a y b, desvest (aX + b) = |a|desvest (X)

e desvest estd en las mismas unidades de medicién que X (a diferencia de Var)

Pregunta
Si el salario promedio en miles de pesos es 52.3 y su desvest es 14.6, jcual es el

salario medio y su desvest en pesos?

Variable aleatoria estandarizada: 7 = (X — pu)/o
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Covarianza poblacional (Cov)

Mide la dependencia lineal entre 2 variables aleatorias
oxy = Cov(X,Y) = E[(X — pux)(Y — py)] = E(XY) — pxpy

o ux =E(X), py =E(Y)
e Sioxy >0, enpromedio X > uxyY > puy, o X< puxy Y < py
Propiedades:
e Si X y Y son independientes, entonces Cov (X,Y) =0
— Pero Cov (X,Y) =0 =% Xy Y son independientes (ej. Y = X?)
— Entonces, correlacién cero e independencia no son lo mismo
e Para cualesquier constantes ay, ap, by y b,
Cov (a1 X + b1, a2Y + by) = a1a2Cov (X, Y)
e Depende de las unidades de medida de las variables aleatorias



Probabilidad
0000000000000 0e00000000

Correlacién poblacional (Corr)

Mide la dependencia lineal pero no depende de las unidades de medida

Cov (X, Y) XY
PRy orr (X, Y) desvest (X) desvest (Y)  oxoy

Propiedades:
o —1<pxy <L VXY
e SiX=Y,Cov(X,Y)=Var(X)=0% y pxy =1
e Si pxy =0, Xy Y no correlacionadas (no hay relacién lineal entre X y Y)
e Si pxy ~ 1, la relacidn lineal es fuerte
e Para cualesquier constantes ay, a, by y by,
— Siajaz >0, Corr (a1 X + b1, a2Y + by) = Corr (X, Y)
— Siajaz <0, Corr (a1 X + b1,a2Y + bp) = —Corr (X,Y)
D
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Esperanza (o media) condicional

Una variable Y puede estar relacionada a una variable X de forma no lineal

La fdp condicional captura esa relaciéon pero no se puede resumir en un solo valor
numérico porque la distribucion de Y dado X = x depende de =

La esperanza condicional captura la relacién no lineal entre Y y X

o Caso discreto: E(Y [ X =) = >, yfyix (y5 | X)
e Promedio ponderado de posibles valores de Y dado que X =z
e Si cambia z, cambia E (Y | X) porque es una funcién de x
En econometria, capturamos la relacién con funciones simples
e E(Y |X)=a+px
e E(Y|X)=10/x
D
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Esperanza condicional
Propiedades:

o E[c(X) | X]=c(X), Vc(X)
— Funciones de X son como constantes

e Para funciones a(X) y b(X),

Ela(X)Y+b(X) | X]=a(X)E(Y | X)+ b(X)

e Si Xy Y son independientes, E(Y | X) =E(Y) = Cov(X,Y) =0 (<4)
— No depende de X

e Ley de las esperanzas iteradas: E[E (Y | X)] = E(Y)
-SiEEU|X)=E(U)yE(U|X)=0, E(U)=0, entonces

E(U|X)=E(U) = Cov(X,U)=0
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Modelos probabilisticos

Distribuciones de probabilidad que dependen de parametros

e Diferentes valores de los pardmetros, generan diferentes distribuciones
Distribuciones cominmente usadas en econometria:

e Distribucién normal y normal estdndar

e Distribucién y?

e Distribucién t

e Distribucion F

Visualizador de distribuciones: Aqui


https://seeing-theory.brown.edu/probability-distributions/index.html
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Distribucién normal (N)

X ~N(p,0%), donde p=E(X) y o°= Var(X)

e Distribucién simétrica alrededor de p
e Si Y = log(X) tiene una distribucién N, X tiene una distribucién lognormal
e 7Z ~ N(0,1) tiene una distribucién normal estandar
— ¢(z) denota la fdp y ®(z) denota la fda, entonces ¢(z) =P (Z < z)
Podemos usar ®(z) para calcular la probabilidad de cualquier evento para Z
e P(Z>2)=1—9(2)

e P(Z< —2)=P(Z > 2)
e P(a<Z<b)=9(b)— d(a)
e P(Z| >c)=P(Z>c)+P(Z< —c)=2[1—-d(c)] V>0
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Distribucion N
Propiedades:
o Si X ~N(p0%), £ ~N(0,1)
e Si X ~ N(u,0?), aX+0b~ N(au+0b,a*0?)
e Si X y Y tienen una distribuciéon conjunta normal, entonces X y Y son
independientes <= Cov (X,Y) =0
e Cualquier combinacién lineal de variables aleatorias independientes con la
misma distribucion normal, tiene una distribuciéon normal
¢ SiY: SN0, i=1,2,....n, \?NN@,“{)
Ejercicio
Encuentra las probabilidades P (X < 6) y P(X > 4) si X ~ N (5, 4)
D
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Distribucién x?
SiZ; XN(0,1),i=1,2,...,n,y X =" 72 entonces
X~ be
e Distribucién no negativa y no simétrica
— n son los grados de libertad

e La forma de la distribucién cambia con n

e Se utiliza en la construccién de las distribuciones t y F
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Distribucion t

SiZ ~N(0,1) y X ~ x2 son independientes, entonces
Z

- VX/n o

e Forma similar a la distribucién normal estandar, pero mas dispersa

— Valores extremos de T son mas probables que los de Z
— n son los grados de libertad
— Cuando n — oo, t, — Z (diferencia entre ambas distribuciones disminuye)

e Se utiliza para pruebas de hipdtesis de un parametro
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Distribucién F
Si X1 ~ X3, ¥ X2 ~ i, son independientes, entonces

_ Xy/ky
Xa/k2

~ Fk1,k2

e Distribucién no negativa
— k1 y ko son los grados de libertad
— Orden de k1 y ko es importante

e Se utiliza para hacer pruebas de hipétesis de varios parametros

— k1 es el nimero de restricciones en los pardmetros
— ko es el nimero de observaciones menos los pardmetros estimados

L4 t% ~ Fl,n



Repaso de Estadistica
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Inferencia estadistica

La estadistica inferencial estudia la estimacién (puntual, por intervalos) de
parametros y pruebas de hipdtesis sobre esos pardametros

e Requiere identificar la poblacién de interés y especificar el modelo (fdp)

Ejemplo
Variable aleatoria Y con fdp conocida, f (y; 6), pero pardmetro 6 desconocido

e Diferentes valores de 6 dan lugar a diferentes distribuciones de probabilidad

Pregunta
i Cudles son los parametros en Y; ~ Bernoulli (p) y Y; ~ N (u, 02)?
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Muestra aleatoria

Si Y1,Y,, ..., Y, son variables aleatorias independientes con la misma fdp
f (y;0), entonces {Y1,Y>,...,Y,} es una muestra aleatoria de la poblacién
representada por f (y; ) y se denota como i.i.d.

e Datos observados cambian con cada muestra
Tipo de muestreo comun en estadistica

e Estimadores puntuales (propiedades)

— Muestras finitas: falta de sesgo, eficiencia
— Muestras grandes: consistencia, distribucién asintética

e Estimacién por intervalos

e Pruebas de hipétesis
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Estimadores y estimados

Dada {Y1,Y>,...,Y,} de una fdp con pardmetro 6 (desconocido), un estimador
W de 6 es una regla que asigna a cada muestra particular un valor para ¢

W:é\:h(Yl,YQ,...,Yn) VS w:é\:h(yl,yg,...,yn)

e W es una v.a. (tiene fdp, E(+), Var(-)) y se llama estimador puntual
e w es un nimero y se llama estimado puntual

Ejemplo

Dada {Y1,Y>,...,Y,} de una poblacién con media i y varianza o2, el
estimador de pes Y = 13" YV, yeldeo?es S = L350 (Y, — \_()2. Para
una muestra particular {y1, 42, ..., 9.}, el estimado de Y es jj = Ytyetectin y g
de 52 es 52— (11=9)*+ (12— 5)°+.. +(yn—7)?

n—1
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Distribucion muestral

La distribucién de probabilidad del estimador W se llama distribucién muestral
e Objeto de estudio de la estadistica matematica

e Enfasis en caracteristicas de la distribucién muestral de W para evaluarlo
como estimador de 6

La distribucién muestral depende de la distribucién de Y y de la funcién h
e La distribucién de Y estd fuera de nuestro control
e Pero podemos escoger la funcién h (supuestos, método de estimacidn)
Hay muchas formas de generar estimadores

e Queremos propiedades que nos permitan descartar los irrelevantes
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Falta de sesgo (insesgadez)

El sesgo de un estimador W de 6 se define como
Sesgo (W) =E (W) — ¢
e W es un estimador insesgado de 0 si E(W) =6, V0

— Promedio de infinitas muestras da €, aunque en la prictica una muestra
Ejemplo
E(Y)=E(GXLY:)=tmu=p y E($%)=0

Pregunta
Si W =Yy, entonces E(Y;) = p, jes util?
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Varianza muestral
Podemos tener 2 estimadores insesgados, pero uno con menor dispersion
e ;Cudl preferimos?
La varianza muestral es la varianza de un estimador W: Var (W)

e Nimero (desconocido) que mide dispersién de la distribucién muestral de W

Ejemplo
Var (V) = Var (1 327, Y;) = Lno? = < — 0 cuando n — oo

Pregunta
Si W =Yy, i{Var (Y1)? ;Se prefiere W =Y o W = Y; para estimar y?
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Eficiencia relativa

Si W; y W5, son estimadores insesgados de 6, W; es eficiente relativo a W si
e Var (W;) < Var (W;) V6, y
e Var (W;) < Var (W,) para al menos un valor de 0

Restringimos nuestra atencién a estimadores insesgados generalmente
Pero para comparar estimadores sesgados usamos el error cuadratico medio

E [(w - 9)2} — Var (W) + [Sesgo (W)]2

e Ej. Tirador de flechas a distancia (sesgo vs eficiencia)



Estadistica
00000000 e000000000000000

Consistencia
Razonable requerir que el procedimiento de estimacidon mejore conforme n — oo
e Andlisis asintético aproxima la distribucién muestral de W con base en n
Si W,, es un estimador de 6 obtenido de una muestra aleatoria Y1, Y,,...,Y,,

W,, es un estimador consistente de 0 si Ve > 0,

P(|W, —0] >¢) -0 cuando n — oo

e Se dice que 0 es el limite en probabilidad de W,,: plim (W,,) =6
e La distribucion de W,, se concentra cada vez mas alrededor de 6
e Consistencia es un requerimiento minimo de un estimador

Si W,, es un estimador insesgado de ¢ y Var (W,,) — 0 cuando n — o0,
entonces plim (W,,) = 6; es decir, W,, es consistente



Ley de los Grandes Niimeros (LGN)

Sean Y1,Y,,..., Y, variables aleatorias i.i.d con media y, entonces
plim (\_fn) = U
° Yn es consistente para
e Podemos acercarnos a p con una muestra suficientemente grande
Se puede combinar con las propiedades de los plim para mostrar que diferentes
estimadores (funciones de otros) son consistentes
Ejemplo

S, = \/S? desviacién estandar muestral no es insesgado pero es consistente
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Normalidad asintética

Necesitamos la forma de la distribucién muestral de W, para
e Construir intervalos de confianza
e Hacer pruebas de hipdtesis

Si {Z, | n=1,2,...} es una secuencia de variables aleatorias tal que V z,
P(Z, < z) = ®(z) cuando n — oo, entonces

Z, ~N(0,1)

e Se dice que Z,, tiene una distribucion normal estandar asintética

En muestras grandes, la distribucién muestral de muchos estimadores es
aproximadamente normal
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Teorema del Limite Central (TLC)

Sea {Y1,Y>,...,Y,} una muestra aleatoria con media y y varianza o2, entonces

_Yn_,u a
YNNG

e El promedio de una m.a. de cualquier poblacién (con varianza finita),

Ton N (0,1)

cuando se estandariza, tiene una distribucidon normal estandar asintdtica
e Muchos estimadores se pueden escribir como funciones de promedios
muestrales, por lo que podemos aplicar la LGN y el TLC
Ejemplo

Yn—l es un estadistico que es asintSticamente normal
S, /vn

De aqui en adelante, ya no se incluye el subindice n
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Métodos de estimacién puntual

Métodos de estimacion de parametros cominmente usados:
e Método de momentos
— Momento poblacional en funcién de parametro se iguala al muestral
e Maxima verosimilitud
— Maximo de una funcién tal que los datos observados son los mas probables
e Minimos cuadrados
— Encuentran la linea que ajusta mejor la direccion general de los datos

Estos métodos producen estimadores con buenas propiedades

e Insesgados, eficientes, consistentes
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Estimacién por intervalos (de la media poblacional)

i Qué tan cerca esta un estimado del parametro 67
e No sabemos porque no conocemos f, pero podemos usar probabilidades
e La desviacion estdndar muestral evalia la incertidumbre de un estimador
Sea {Y1,Y>,...,Y,} una muestra aleatoria de N (i, 0%). Si usamos Y y S2,
Y —u
== "~ th
S/v/n

Si ¢ es el percentil 97.5 de la distribucién t,,_; tal que P(—c < t,,_1 < ¢) =0.95

Y —p ofe S - S\ _
D
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Estimacion por intervalos

El siguiente intervalo de confianza (IC) contiene a 1 95% de las veces

{?—C%,Y—FC%}

e Para una muestra, el IC es [g — c\/iﬁ,yj—l—c\/iﬁ}
Si ¢,, denota el percentil 100(1 — «) de la distribucién t,,_;, entonces el IC para
una muestra particular es |y — Ca/g\/iﬁ, Y+ ca/zﬁ

® ¢, requiere escoger o y conocer los grados de libertad n — 1

e ¢, se puede obtener de las tablas de la distribuciéon
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Estimacion por intervalos
Dado que desvest (7) = \/Lﬁ la variable aleatoria \/iﬁ es el error estandar de Y
e Si definimos el error estandar del estimado puntual de §j como
errest (§) = -, podemos reescribir el IC como [§ £ cq/2 X errest (7)]
e Dado que t, — N (0, 1), para a = 0.05, ¢o/» — 1.96 cuando n — oo,
entonces la regla general para un IC al 95% es [y £ 2 x errest (7)]

e Cuando la poblacién tenga una distribucién no normal, pero un tamano de
muestra grande, podemos usar el TLC para aproximar la distribucién de Y

— Un IC al 95% aproximado es [§ &+ 1.96 x errest (7)]
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Dispersion en distribucion poblacional y muestral

e o es la desviacién estandar poblacional (desconocida) de Y
e s =7 es el estimado de o
e desvest (Y) = \/Lﬁ es la desviacion estandar muestral de Y

— desvest (3_() — 0 cuando n — oo
— El estimador Y de p se vuelve mas preciso conforme n — oo
o desvest (Y) = errest (Y) = == es el error estandar de Y

— errest es un estimado de -&=
Jn
— Es lo que se usa para construir IC
— Es fundamental para pruebas de hipdtesis
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Pruebas de hipédtesis
Métodos para contestar preguntas binarias utilizando una muestra de datos
e ;Qué tan fuerte es la evidencia en contra de una hipétesis?
Tipos de hipdtesis:
e La hipétesis nula Hj se asume cierta hasta que los datos sugieran que hay
suficiente evidencia en favor de la hipétesis alternativa H; o H,

e Hay hipétesis alternativas de un lado (evidencia contra Hy en una sola
direccién) o de dos lados (cualquier desviacién de Hy)

Tipos de errores:
e Error tipo |. Rechazar Hy cuando es en realidad cierta

e Error tipo Il. No rechazar Hy cuando es en realidad falsa
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Pruebas de hipédtesis

Al decidir sobre Hy, podemos acertar o equivocarnos y nunca sabremos cudl fue
e Pero podemos calcular la probabilidad de cometer cualquiera de los 2 errores
Construimos las pruebas tal que la probabilidad de cometer error tipo | sea baja
e El nivel de significancia de la prueba « es la probabilidad del error tipo |
— a = P (Rechazar Hy | Ho)

— Valores comunes para a son {0.1,0.05,0.01}
— Cuantifica la tolerancia de cometer error tipo |

e Minimizamos el error tipo Il al maximizar el poder de la prueba
— 7 (0) = P(Rechazar Hy | ) =1 — P (Tipo II | )
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Pruebas de hipédtesis
Para probar Hy contra H,, se necesita un estadistico de prueba y un valor critico

e Un estadistico de prueba T es una variable aleatoria que asigna un valor a
cada muestra

— Cuantifica cuanto se desvian los datos observados de lo esperado bajo Hg
— Diferencia con estimador: Un estimador no depende de 8
— Para una muestra particular es t
e Tras definir el nivel de significancia «, encontramos el valor critico ¢ con
base en la distribucién de T bajo el supuesto de que Hy es cierta
e La regla de rechazo determina cuando Hy se rechaza al comparar el
estadistico de prueba t contra un valor critico ¢

— Lenguaje: No se rechaza Hy (v) vs se acepta Hy (X)
D
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Prueba de hipdtesis de la media de una poblacién normal
Prueba de un lado para i de una poblacién N (u, 0?)

Ho: p=po (¢. po=0)
Ha: p> pio
Estadistico t
T:i/\/‘g’wn_l - t:efth‘z?j)
Si o = 0.05, ¢ se escoge tal que la probabilidad de error tipo | es 5%:
P(T > c|Hp)=0.05

Regla de rechazo: t > ¢, donde c es el percentil 100(1 — «) de distribucién t,,_;
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Prueba de hipdtesis de la media de una poblacién normal

H. Escoger c tal que Regla rechazo ¢ percentil valor — p
uw>pg P(T>c|Hy) =« t>c 100(1 —a) P(T >1t)
pw<pg P(T<—c|Hy)=a t < —c 100(1 —a) P(T <)
n#m P(TI>clH)=a  [t>c  100(1—%) P(T|> )
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Prueba de hipdtesis de la media de una poblacién normal

Cuando la poblacién no es normal pero n — oo, por el TLC,
_ Y- Ho a

T

N(0,1)

e t se calcula como antes pero se utilizan valores criticos de N (0, 1)

Los IC se pueden usar para hacer PH de dos lados

Ho: p=po
Ha ' p# po

e Si o ¢ IC, Hy se rechaza (depende del valor de «)
D



Estadistica Econometria

0000000000000 O000O0000000e

Valores p

El valor p indica el nivel de significancia mas alto para el que no se rechaza H
e Asociado con el valor del estadistico como nuestro valor critico
e Probabilidad de valores mas extremos al valor del estadistico si Hy es cierta

Ejemplo
SiHo:p=po Ha:pu>poy T ~N(0,1),
valor—p=P(T >t | Hp) =1— d(t) = 0.065
e Si o < 0.065, Hy no se rechaza . Si o > 0.065, Hy se rechaza
Valores p pequenos generalmente son evidencia en contra de Hy

e Regla de rechazo: valor —p < «
e Permite hacer una prueba de hipdtesis para cualquier nivel de significancia
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Comentarios

Es importante considerar significancia tanto practica como estadistica
e Los estimados puntuales indican direccién (signo) y magnitud

Para entender conceptos en inferencia estadistica, es importante distinguir entre
e Estimador W (variable aleatoria) y estimado w (ntimero)

En econometria, la convencidn es utilizar
e () para un pardmetro poblacional, y

e () tanto para el estimador como para el estimado

— El contexto indica si se trata del estimador (propiedades estadisticas) o del
estimado (niimero)
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