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2 Modelo de Regresión Lineal Simple (RLS)

El modelo explica una variable en términos de otra

• El álgebra y la interpretación del modelo son relativamente sencillas

• Permite cubrir temas importantes de forma aislada

– Cambios en unidades de medición, efectos no lineales

2.1 Definición del modelo

y y x son 2 variables que representan alguna población

• Queremos explicar y en términos de x

Preguntas que debemos responder:

• ¿Cómo permitimos que otros factores afecten a y si la relación no es exacta?

• ¿Cuál es la forma funcional de la relación entre x y y?

• ¿Cómo sabemos si capturamos una relación ceteris paribus entre x y y?

Empezamos con una ecuación simple para capturar la relación:

y = ω0 + ω1x+ u

• Suponemos que la ecuación se cumple en la población

La ecuación se conoce como:

• Modelo de regresión lineal simple (RLS)

• Modelo de regresión lineal de 2 variables

• Modelo de regresión lineal bivariado

La variable y se conoce como variable:

• dependiente

• explicada

• de respuesta

• predicha

• regresada

La variable x se conoce como variable:

• independiente

• explicativa

• de control

• predictor o predictiva

• regresor

• covariable
Los parámetros son ω0 y ω1
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• ω0 es el parámetro del intercepto o la constante (rara vez es de interés)

• ω1 es el parámetro de la pendiente (interés principal)

La variable u:

• Se conoce como el término de error o de pertubación

• Captura todos los factores no observados distintos a x que afectan a y

• Ej. y = salario, x = educ, u = experiencia, habilidad, antigüedad, ética laboral, . . .

La relación expresada en cambios es:

!y = ω1!x+!u

Si los factores en u se mantienen fijos,

!u = 0 =→ !y = ω1!x

• x tiene un efecto lineal en y

– Mismo efecto en y sin importar el valor inicial de x

¿Cómo sabemos el efecto ceteris paribus de x sobre y si ignoramos todos los otros factores?

• Necesitamos hacer un supuesto para restringir la relación entre x y u

– Usamos conceptos de probabilidad porque x y u son variables aleatorias

• Un supuesto poco restrictivo es
E (u) = 0

– Siempre podemos redefinir el intercepto ω0 para esto

• Posibilidades para que E (u) = 0:

– Suponer que u y x no estan correlacionadas

∗ No es útil porque solo mide dependencia lineal

– Definir una distribución condicional de u dado x

• Supuesto clave:
E (u|x) = E (u)

– Dice que u es independiente en media de x

– El valor esperado de u no depende de x y es igual al promedio de u para toda
la población

• Combinando ambos supuestos, obtenemos el supuesto de media condicional cero

E (u|x) = 0

– Ej. E (habilidad|8) = E (habilidad|6)
– El supuesto de media condicional cero da una nueva interpretación para ω1
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La función de regresión de la población (FRP) es:

E (y|x) = E (ω0 + ω1x+ u|x) = ω0 + ω1x

• Promedio de y (no la y que vaŕıa con u) es una función lineal de x

– Si !x = 1, E (y) sube en ω1

[Gráfica]

2.2 Derivación de los estimadores MCO

Observamos x y y, pero no observamos ω0, ω1 ni u
Podemos estimar los parámetros ω0 y ω1 a partir de una muestra aleatoria de la población
de tamaño n, {(xi, yi) | i = 1, 2, . . . , n}
En la población,

yi = ω0 + ω1xi + ui ↑ i =→ ui = yi ↓ ω0 ↓ ω1xi

• ui es el término de error de la observación i

– Factores que afectan a yi distintos de xi

Con los supuestos E (u) = 0 y E (u|x) = E (u) podemos concluir que Cov (x, u) = 0

Cov (x, u) = E (xu)↓ E (x)E (u) = E (xu) = 0

• Entonces, tenemos 2 restricciones para la distribución de probabilidad conjunta de
x y y:

– E (u) = E (y ↓ ω0 ↓ ω1x) = 0

– E (xu) = E [x (y ↓ ω0 ↓ ω1x)] = 0

Escogemos ω̂0 y ω̂1 de forma que resuelvan las versiones muestrales de esas 2 restricciones
(expresadas en promedios y sustituyendo ω̂0 y ω̂1, sistema 2↔ 2):

1

n

n∑

i=1

(
yi ↓ ω̂0 ↓ ω̂1xi

)
= 0 =→ ȳ ↓ ω̂0 ↓ ω̂1x̄ = 0 =→ ω̂0 = ȳ ↓ ω̂1x̄

1

n

n∑

i=1

xi

(
yi ↓ ω̂0 ↓ ω̂1xi

)
= 0 =→

n∑

i=1

xi

[
yi ↓

(
ȳ ↓ ω̂1x̄

)
↓ ω̂1xi

]
= 0

=→
n∑

i=1

xi (yi ↓ ȳ)↓ ω̂1

n∑

i=1

xi (xi ↓ x̄) =
n∑

i=1

(xi ↓ x̄) (yi ↓ ȳ)↓ ω̂1

n∑

i=1

(xi ↓ x̄)2 = 0

=→ ω̂1 =

∑
n

i=1 (xi ↓ x̄) (yi ↓ ȳ)
∑

n

i=1 (xi ↓ x̄)2
=

ε̂xy

ε̂2
x

= ϑ̂xy
ε̂y

ε̂x

Estos se conocen como los estimadores de mı́nimos cuadrados ordinarios (MCO)

• El nombre viene de una forma alternativa de obtener las versiones muestrales de
las 2 restricciones anteriores
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– Escogemos ω̂0 y ω̂1 de forma que minimicen la suma de los residuales al

cuadrado min
∑

n

i=1 û
2
i
= min

∑
n

i=1

(
yi ↓ ω̂0 ↓ ω̂1xi

)2

– Las condiciones de primer orden son idénticas a las ecuaciones de arriba

• ¿Cuál es la única condición para calcular ω̂0 y ω̂1?

– Variación en xi

• Regresión simple es un análisis de correlación entre 2 variables

– No implica causalidad

– A veces es suficiente

Al calcular los estimados MCO, podemos usarlos para obtener 2 cosas:

• Valores ajustados o estimados para y cuando x = xi:

ŷi = ω̂0 + ω̂1xi

• Residuales (no son los errores ui):

ûi = yi ↓ ŷi = yi ↓ ω̂0 ↓ ω̂1xi

[Gráfica]
La ĺınea de regresión MCO es

ŷ = ω̂0 + ω̂1x =→ !ŷ = ω̂1!x

• Es la función de regresión de la muestra (FRM), vaŕıa con cada muestra

• Versión estimada de la FRP: E (y|x) = ω0 + ω1x, fija y desconocida en la población

[Gráfica]

Ejemplo. wage1.dta
⊋salario = ↓0.90 + 0.54educ

• Si educ = 8,
⊋salario = ↓0.90 + 0.54(8) = 3.42

Terminoloǵıa: Correr una regresión de y (variable dependiente) sobre x (variable inde-
pendiente) para obtener ω̂0 y ω̂1

• Ej. Correr una regresión del salario sobre educ

2.3 Propiedades algebraicas de MCO

Estas propiedades se cumplen para cualquier muestra (por construcción)
Ayudan a entender qué le pasa a los estimados MCO cuando manipulamos los datos

• Ej. Si cambiamos las unidades de medición
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2.3.1 Valores ajustados y residuales

Cada valor ajustado de ŷi está sobre la ĺınea de regresión MCO
El residual MCO para cada observación i es ûi = yi ↓ ŷi

• Generalmente, ûi ↗= 0 por lo que los puntos yi no caen sobre la ĺınea MCO

• Si ûi > 0, la ĺınea de regresión subestima yi

• Si ûi < 0, la ĺınea de regresión sobreestima yi

2.3.2 Propiedades algebraicas

1.
∑

n

i=1 ûi = 0

• Viene de la primera condición

• ω̂0 y ω̂1 son escogidos tal que la suma (y promedio) de los residuales sea cero

2.
∑

n

i=1 xiûi = 0

• Viene de la segunda condición

• Equivale a Cov (xi, ûi) = 0 porque el promedio muestral de ûi es cero

3. ȳ = ω̂0 + ω̂1x̄

• Viene de la primera condición

• El punto (x̄, ȳ) siempre está sobre la ĺınea de regresión MCO

Para una interpretación alternativa, observa que MCO descompone yi en 2 partes:

yi = ŷi + ûi

• ¯̂y = ȳ porque ¯̂u = 0

• Cov (ŷi, ûi) = 0

– Los valores ajustados y los residuales no están correlacionados

Podemos definir la variación de cada una de las partes:

• Suma de cuadrados total: SCT =
∑

n

i=1 (yi ↓ ȳ)2

– Mide la variación total de (o qué tan dispersa está) yi en la muestra

• Suma de cuadrados explicada: SCE =
∑

n

i=1 (ŷi ↓ ȳ)2

– Mide la variación de ŷi en la muestra

• Suma de cuadrados de los residuales: SCR =
∑

n

i=1 û
2
i

– Mide la variación de ûi en la muestra

La variación total en y siempre se puede expresar como la suma de la variación explicada
y la no explicada (porque Cov (ŷi, ûi) = 0):

SCT = SCE + SCR
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2.3.3 Bondad de ajuste

Número que resume qué tan bien se ajusta la ĺınea de regresión MCO a los datos
Si SCT ↗= 0 (yi ↗= c ↑ i),

1 =
SCE

SCT
+

SCR

SCT
=→ SCE

SCT
= 1↓ SCR

SCT
= R2

• R2 se conoce como el coeficiente de determinación

• 0 ↘ R2 ↘ 1 porque SCE ↗> SCT

– R2 es la fracción de la variación de y en la muestra explicada por x

• Interpretación en porcentaje (100↔ R2)

– Porcentaje de variación de y en la muestra explicada por x

• R2 ≃ 0 significa que la ĺınea de regresión MCO ajusta mal

– Aún aśı puede llegar a ser útil

Pregunta. ¿Qué significaŕıa una R2 = 1?

2.4 Unidades de medición y forma funcional

¿Qué le pasa a los estimados MCO cuando manipulamos los datos?

2.4.1 Efectos del cambio en unidades de medición

¿Qué pasa si cambiamos las unidades de medición de las variables en el modelo RLS?
Podemos multiplicar por una constante c a la variable dependiente o a la independiente

• Si ŷ1 = ω̂0 + ω̂1x y y2 = cy1, entonces

ŷ2 = cω̂0 + cω̂1x

– Afecta a ambos estimados

• Si ŷ = ω̂0 + ω̂1x1 y x2 =
x1
c
, entonces

ŷ = ω̂0 + cω̂1x2

– No afecta al intercepto

R2 es invariante a cambios en unidades de x o y

• R2 no depende de las unidades de medición

Preguntas. Una regresión del salario expresado en miles de dólares (salariomil)
sobre el rendimiento del capital expresado en porcentaje (roepct) arroja lo siguiente:

⊋salariomil = 963.191 + 18.501roepct
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• ¿Cómo cambian los estimados si expresamos el salario en dólares (salariodol)
(y el rendimiento del capital se queda en porcentaje, roepct)?

• ¿Cómo cambian los estimados si expresamos el rendimiento del capital en
proporción (roedec) (y el salario se queda en miles de dólares, salariomil)?

2.4.2 Efectos no lineales en RLS

Hasta ahora solo hemos visto la relación lineal entre x y y

• Es fácil capturar efectos no lineales si definimos apropiadamente x y y

Podemos usar el logaritmo natural para capturar:

• Crecimiento porcentual constante (rendimientos crecientes)

• Elasticidad constante

Modelo nivel-nivel
y = ω0 + ω1x+ u =→ !y = ω1!x

• Mismo efecto en y sin importar el valor inicial de x

Modelo log-nivel

log(y) = ω0 + ω1x+ u =→ ! log(y) = ω1!x =→ %!y ≃ (100↔ ω1)!x

• Equivalente a y = exp(ω0 + ω1x+ u)
[Gráfica]

• Captura un crecimiento porcentual constante

• Cambio en la variable dependiente crece por cada cambio unitario en x

• 100↔ ω1 se conoce como la semi-elasticidad de y respecto a x

Pregunta. Una regresión del logaritmo del salario en dólares por hora sobre los
años de educación arroja lo siguiente:

⊋log(salario) = 0.584 + 0.083educ

• ¿Cómo cambia el salario por cada año adicional de educación?

Modelo log-log o de elasticidad constante

log(y) = ω0 + ω1 log(x) + u =→ ! log(y) = ω1! log(x) =→ %!y ≃ ω1%!x

• ω1 se conoce como la elasticidad de y con respecto a x

Pregunta. Una regresión del logaritmo del salario sobre el logaritmo de los ventas
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arroja lo siguiente:

⊋log(salario) = 4.822 + 0.257 log(ventas)

• ¿Cómo cambia el salario con las ventas?

Modelo nivel-log (poco usado)

y = ω0 + ω1 log(x) + u =→ !y = ω1! log(x) =
ω1

100
100! log(x) =→ !y ≃ ω1

100
%!x

• ω1

100 es el cambio unitario en y cuando x aumenta 1%

Preguntas. Una regresión de las horas trabajadas a la semana sobre el logaritmo
del salario por hora arroja lo siguiente:

⊋horas = 33 + 45.1 log(salario)

• ¿Cómo cambian las horas trabajadas con un aumento de 1% en el salario?

• ¿Y si el salario aumenta en 10%?

2.4.3 Significado de regresión lineal

El modelo y = ω0 + ω1x+ u permite capturar relaciones no lineales entre x y y

• El modelo es lineal en los parámetros ω0 y ω1

• No hay restricciones en cómo se definen x y y

– Importante: Definiciones de x y y śı afectan la interpretación

• Ej. Modelo de regresión no lineal

y =
1

ω0 + ω1x
+ u

2.5 Valores esperados y varianzas de los estimadores MCO

Interesados en propiedades de los estimadores ω̂0 y ω̂1 para los parámetros ω0 y ω1

• Propiedades de las distribuciones muestrales (valor esperado, varianza)

• Propiedades estad́ısticas (falta sesgo, consistencia)

Para estudiar esas propiedades, hacemos supuestos sobre la población (modelo RLS)

• Supuestos Gauss-Markov (G-M)

– Supuestos ideales para obtener propiedades deseables

– Después desviaciones de esos supuestos

– Ej. Ĺınea de producción de una fábrica
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2.5.1 Falta de sesgo en MCO

¿Cuál es el centro de la distribución de ω̂1?

Supuesto RLS.1. El modelo es lineal en parámetros

Este supuesto define el modelo poblacional

y = ω0 + ω1x+ u

• ω0 y ω1 son los parámetros poblacionales (desconocidos)

• x, y, u son variables aleatorias

• Permite capturar relaciones no lineales

Supuesto RLS.2. La muestra es aleatoria

Obtenemos una muestra aleatoria de tamaño n, {(xi, yi) | i = 1, 2, . . . , n}, del modelo
poblacional en RLS.1

• Usamos los datos para estimar los parámetros

El modelo poblacional en términos de la muestra aleatoria es:

yi = ω0 + ω1xi + ui ↑i

• ui son los factores no observados que afectan a yi

• ui ↗= ûi

[Gráfica]

Supuesto RLS.3. Hay variación en la variable independiente en la muestra

Los valores de x en la muestra, {xi | i = 1, 2, . . . , n}, no son todos iguales

• Se puede verificar revisando que desvest(xi) ↗= 0

• Recordatorio: Los estimados MCO para el intercepto y la pendiente están definidos
solo si hay variación en la variable independiente

Supuesto RLS.4. Media condicional cero

E (u|x) = 0

Todos los otros factores que afectan a y no se correlacionan con x

• Para una muestra aleatoria, RLS.4 implica que E (ui|xi) = 0 ↑i

• Permite obtener estimadores de ω0 y ω1 insesgados

Bajo supuestos RLS.1-RLS.4, ω̂0 y ω̂1 son insesgados

9



• Primero definimos: SCTx =
∑

n

i=1 (xi ↓ x̄)2

• Reescribimos ω̂1 (variable aleatoria)

ω̂1 =

∑
n

i=1 (xi ↓ x̄) (yi ↓ ȳ)
∑

n

i=1 (xi ↓ x̄)2
=

∑
n

i=1 (xi ↓ x̄) yi
SCTx

=

∑
n

i=1 (xi ↓ x̄) (ω0 + ω1xi + ui)

SCTx

ω̂1 =
ω1SCTx +

∑
n

i=1 (xi ↓ x̄) ui

SCTx

=→ E
(
ω̂1

)
= ω1 +

∑
n

i=1 (xi ↓ x̄)E (ui)

SCTx

= ω1

• Para ω̂0, usamos ȳ = ω0 + ω1x̄

ω̂0 = ȳ ↓ ω̂1x̄ = ω0 + ω1x̄+ ū↓ ω̂1x̄ = ω0 +
(
ω1 ↓ ω̂1

)
x̄+ ū

E
(
ω̂0

)
= ω0 + E

(
ω1 ↓ ω̂1

)
x̄+ E (ū) = ω0

Comentarios sobre la falta de sesgo:

• Falta de sesgo depende de RLS.1-RLS.4

– Ej. Si RLS.4 no se cumple, ω̂0 y ω̂1 son sesgados

• En RLS siempre preocupa que Corr (x, u) ↗= 0

– Puede resultar en correlación espuria entre x y y

– Ej. Variable omitida

2.5.2 Varianza de los estimadores MCO

La distribución de ω̂1 está centrada en ω1, ¿qué tan dispersa es?

Supuesto RLS.5. Homocedasticidad

Var (u | x) = ε
2

La varianza del error no observado condicional en x es constante (homocedasticidad)

• Es diferente del valor esperado de u dado x: E (u|x) = 0

• No se utiliza para demostrar falta de sesgo

• De la definición de la varianza,

Var (u | x) = E
(
u
2 | x

)
↓ [E (u | x)]2 = E

(
u
2 | x

)
= ε

2

• No depende de x, entonces ε2 = E (u2) = Var (u)

• ε
2 es la varianza incondicional de u y se llama varianza del error

• ε es la desviación estándar del error

• Si Var (u | x) = g (x), el término de error exhibe heterocedasticidad

– Varianza no constante
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Podemos expresar RLS.4 y RLS.5 en términos de la media y varianza condicionales de y

• RLS.4: E (y | x) = ω0 + ω1x , es lineal en x

• RLS.5: Var (y | x) = ε
2, es constante

[Gráfica]

Las varianzas muestrales de los estimadores MCO son

Var
(
ω̂1

)
=

ε
2

SCTx

y Var
(
ω̂0

)
=

ε
2

n

∑
n

i=1 x
2
i

SCTx

• Válidas solo bajo homocedasticidad

• Más variación en lo no observado (u), hace más dif́ıcil estimar ω1

• Se prefiere más varianza en xi porque es más fácil estimar ω1, aśı como identificar
la relación entre E (y | x) y x

• Una muestra más grande debeŕıa aumentar SCTx

– Menor varianza para ω̂1

¿Por qué no podemos calcular las varianzas muestrales?

2.5.3 Estimación de la varianza del error

Las fórmulas de las varianzas dependen de ε
2, generalmente se desconoce

Podemos estimar ε2 para, a su vez, estimar Var
(
ω̂0

)
y Var

(
ω̂1

)

Importante distinguir entre:

• Modelo poblacional: yi = ω0 + ω1xi + ui

– Usa parámetros (ω0 y ω1) y los errores ui nunca se observan

• Descomposición entre valores ajustados y residuales: yi = ω̂0 + ω̂1xi + ûi

– Usa estimados (ω̂0 y ω̂0) y los residuales ûi se obtienen de los datos

Podemos reescribir los residuales como función de los errores:

ûi = yi ↓ ω̂0 ↓ ω̂1xi = (ω0 + ω1xi + ui)↓ ω̂0 ↓ ω̂1xi = ui ↓
(
ω̂0 ↓ ω0

)
↓

(
ω̂1 ↓ ω1

)
xi

• Entonces ûi ↗= ui, aunque E (ui ↓ ûi) = 0

Sabemos que ε
2 = E (u2), entonces un ’estimador’ insesgado seŕıa ε̃

2 = 1
n

∑
n

i=1 u
2
i

• ¿Cuál es el problema con ese estimador?

Tenemos estimados de ui (ûi), entonces podŕıamos usar ε̌2 = 1
n

∑
n

i=1 û
2
i
= SCR

n

• ¿Problema? Es sesgado

• No satisfice las restricciones de los residuales MCO:
∑

n

i=1 ûi = 0 y
∑

n

i=1 xiûi = 0

• ¿Cuántos grados de libertad hay?
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Un estimador insesgado de ε
2 es

ε̂
2 =

1

n↓ 2

n∑

i=1

û
2
i
=

SCR

n↓ 2

• E (ε̂2) = ε
2

• Si sustituimos ε̂2 arriba, tenemos estimadores insesgados para Var
(
ω̂0

)
y Var

(
ω̂1

)

ε̂ =
⇐
ε̂2 se llama el error estándar de la regresión

• E (ε̂) ↗= ε pero es consistente

• Es un estimado de la desviación estándar de los factores no observados que afectan
a y

• Propósito principal: Usar ε̂ para estimar las desviaciones estándar de ω̂0 y ω̂1

Dado que desvest
(
ω̂1

)
= ε→

SCTx

, su estimador es

errest
(
ω̂1

)
=

ε̂⇐
SCTx

• Se conoce como el error estándar de ω̂1

• Representa tanto a una variable aleatoria como al estimado

• Nos da una idea de la precisión del estimador

• Sirven para construir estad́ısticos de prueba e intervalos de confianza

2.6 Regresión por el origen y sobre una constante

Si imponemos la restricción ω0 = 0, escogemos ω̃1 tal que ỹ = ω̃1x

ω̃1 =

∑
n

i=1 xiyi∑
n

i=1 x
2
i

• Igual que ω̂1 pero con x̄ = 0

• Al menos un xi ↗= 0, ¿por qué?

• La ĺınea pasa por el origen (ỹ = 0 cuando x = 0)

• Si ω0 ↗= 0, ω̃1 estará sesgado [E
(
ω̃1

)
↗= ω1]

• R2
< 0 es posible (ȳ ajusta mejor a y que ỹ)

Si imponemos la restricción ω1 = 0, ω̃0 = ȳ

• Produce la menor suma de desviaciones cuadradas

• Si ω1 ↗= 0, ω̃0 estará sesgado [E
(
ω̃0

)
↗= ω0]
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2.7 Resumen del modelo RLS

• Dada una muestra aleatoria, el método MCO se usa para estimar los parámetros
del intercepto y la pendiente del modelo poblacional

• Algebra de MCO: Podemos calcular valores ajustados, residuales y cambios predi-
chos en variable dependiente para un cambio dado en la variable independiente

• Cuestiones prácticas:

– Comportamiento de MCO cuando cambian las unidades de medición

– Uso del logaritmo natural para modelar elasticidad constante y semi-elasticidad

• Bajo supuestos RLS.1 a RLS.4, los estimadores MCO son insesgados

– RLS.4 no se cumple si valores omitidos en u se correlacionan con x

• Si suponemos homocedasticidad, podemos estimar las varianzas muestrales de MCO

• Regresión por el origen

• ¿Qué falta?

– Eficiencia de MCO, hacer pruebas de hipótesis sobre los parámetros pobla-
cionales, intervalos de confianza

– RLS es un caso particular de RLM
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