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2 Modelo de Regresién Lineal Simple (RLS)

El modelo explica una variable en términos de otra
e Kl algebra y la interpretacion del modelo son relativamente sencillas
e Permite cubrir temas importantes de forma aislada

— Cambios en unidades de medicion, efectos no lineales

2.1 Definicion del modelo

y v x son 2 variables que representan alguna poblacién
e Queremos explicar y en términos de x
Preguntas que debemos responder:
e ;Cémo permitimos que otros factores afecten a y si la relaciéon no es exacta?
e ;Cual es la forma funcional de la relacién entre z y y?
e ;Coémo sabemos si capturamos una relacion ceteris paribus entre x y y?
Empezamos con una ecuacién simple para capturar la relacién:
y= 0+ bz +u
e Suponemos que la ecuacion se cumple en la poblacion
La ecuacién se conoce como:
e Modelo de regresion lineal simple (RLS)
e Modelo de regresion lineal de 2 variables

e Modelo de regresion lineal bivariado

La variable y se conoce como variable: La variable x se conoce como variable:
e dependiente ¢ independiente
e explicada e explicativa
e de respuesta e de control
e predicha e predictor o predictiva
e regresada e regresor

. e covariable
Los parametros son 5y y (51



e [y es el parametro del intercepto o la constante (rara vez es de interés)
e [3; es el pardmetro de la pendiente (interés principal)
La variable u:
e Se conoce como el término de error o de pertubacion
e Captura todos los factores no observados distintos a z que afectan a y
e Ej. y = salario, r = educ, u = experiencia, habilidad, antiguedad, ética laboral, . ..
La relacién expresada en cambios es:
Ay = 1Az + Au
Si los factores en u se mantienen fijos,
Au=0 = Ay = Az
e 1 tiene un efecto lineal en y
— Mismo efecto en y sin importar el valor inicial de z
. Como sabemos el efecto ceteris paribus de x sobre y si ignoramos todos los otros factores?
e Necesitamos hacer un supuesto para restringir la relacién entre x y u
— Usamos conceptos de probabilidad porque z y u son variables aleatorias

e Un supuesto poco restrictivo es
E(u)=0

— Siempre podemos redefinir el intercepto [y para esto

Posibilidades para que E (u) = 0:

— Suponer que u y x no estan correlacionadas
x No es 1til porque solo mide dependencia lineal

— Definir una distribucién condicional de u dado z

Supuesto clave:
E (ulz) = E (u)
— Dice que u es independiente en media de x

— El valor esperado de u no depende de x y es igual al promedio de u para toda
la poblacién

Combinando ambos supuestos, obtenemos el supuesto de media condicional cero
E (ulz) =0
— Ej. E (habilidad|8) = E (habilidad|6)

— El supuesto de media condicional cero da una nueva interpretacién para [3;



La funcién de regresién de la poblacién (FRP) es:
E (ylz) = E (B + bz + ulz) = o + pix
e Promedio de y (no la y que varfa con u) es una funcién lineal de x
— Si Az =1, E(y) sube en
[Gréfical

2.2 Derivacion de los estimadores MCO

Observamos = y y, pero no observamos [y, £ ni u
Podemos estimar los parametros By y 1 a partir de una muestra aleatoria de la poblacién

de tamano n, {(z;,y;) | i=1,2,...,n}
En la poblacion,

Yi = Po+ biri tup Vi = w;=y;— Bo— fiwi
e wu; es el término de error de la observacion ¢
— Factores que afectan a y; distintos de x;
Con los supuestos E (u) = 0 y E (u|z) = E (u) podemos concluir que Cov (z,u) =0
Cov (z,u) =E(2u) —E (z)E (u) = E(zu) =0
e Entonces, tenemos 2 restricciones para la distribucion de probabilidad conjunta de
Ty Uy
—E(u)=E(y—fo—piz) =0
— E(zu) =E[z (y — fo — fiz)] =

Escogemos 50 y 51 de forma que resuelvan las versiones muestrales de esas 2 restricciones
(expresadas en promedios y sustituyendo 50 y Bl, sistema 2 x 2):
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Estos se conocen como los estimadores de minimos cuadrados ordinarios (MCO)

e Fl nombre viene de una forma alternativa de obtener las versiones muestrales de
las 2 restricciones anteriores



— Escogemos BO y Bl de forma que minimicen la s2uma de los residuales al
cuadrado min > | 47 = miny ;. , <yi — 30 — 31331)
— Las condiciones de primer orden son idénticas a las ecuaciones de arriba
e ;Cuadl es la tnica condicién para calcular 50 y Bl?
— Variacién en z;
e Regresion simple es un analisis de correlacion entre 2 variables

— No implica causalidad

— A veces es suficiente
Al calcular los estimados MCO, podemos usarlos para obtener 2 cosas:
e Valores ajustados o estimados para y cuando x = x;:
Yi = B\o + B\lxi
e Residuales (no son los errores u;):
ai:yi_@:yi_B\O_B\lxi

[Gréfical
La linea de regresion MCO es

J= B0+ Pae = Aj=FAe
e Es la funcién de regresién de la muestra (FRM), varfa con cada muestra
e Version estimada de la FRP: E (y|z) = Sy + iz, fija y desconocida en la poblacién
[Gréfical

Ejemplo. wagel.dta
salario = —0.90 + 0.54educ

e Sieduc = 8§,
salario = —0.90 + 0.54(8) = 3.42

Terminologia: Correr una regresién de y (variable dependiente) sobre x (variable inde-
pendiente) para obtener Sy y 5

e Ej. Correr una regresion del salario sobre educ

2.3 Propiedades algebraicas de MCO

Estas propiedades se cumplen para cualquier muestra (por construccién)
Ayudan a entender qué le pasa a los estimados MCO cuando manipulamos los datos

e Ej. Si cambiamos las unidades de medicion



2.3.1 Valores ajustados y residuales

Cada valor ajustado de 7; estd sobre la linea de regresién MCO
El residual MCO para cada observacién i es u; = y; — U
e Generalmente, u; # 0 por lo que los puntos y; no caen sobre la linea MCO

e Siu; > 0, la linea de regresién subestima y;

e Siu; <0, la linea de regresién sobreestima y;

2.3.2 Propiedades algebraicas

1. Z?:l ﬂl - O
e Viene de la primera condicion
° 50 y Bl son escogidos tal que la suma (y promedio) de los residuales sea cero

2. Z?:l xlﬂz =0

e Viene de la segunda condicion
e Equivale a Cov (z;,u;) = 0 porque el promedio muestral de u; es cero

3. y= 0o+ b7
e Viene de la primera condicién
e El punto (z, y) siempre estd sobre la linea de regresién MCO

Para una interpretacion alternativa, observa que MCO descompone y; en 2 partes:
Yi = Ui + U
e § =7 porque U =0
e Cov (y;,u;) =0
— Los valores ajustados y los residuales no estan correlacionados
Podemos definir la variacién de cada una de las partes:
e Suma de cuadrados total: SCT = 31" (y; — 7)°

— Mide la variacién total de (o qué tan dispersa estd) y; en la muestra

e Suma de cuadrados explicada: SCE = 32" (3; — §)°

— Mide la variacién de 7; en la muestra
e Suma de cuadrados de los residuales: SCR = Y | u?
— Mide la variacién de @; en la muestra
La variacion total en y siempre se puede expresar como la suma de la variacién explicada

y la no explicada (porque Cov (y;, u;) = 0):
SCT = SCE + SCR



2.3.3 Bondad de ajuste

Numero que resume qué tan bien se ajusta la linea de regresion MCO a los datos
Si SCT #0 (y; # ¢ Vi),

B SCE+SCR . SCE_l_SCR_
~ SCT  SCT SCT SCT

R2
e R? se conoce como el coeficiente de determinacién
e 0 <R? <1 porque SCE # SCT

— R? es la fraccién de la variacién de y en la muestra explicada por z
e Interpretacién en porcentaje (100 x R?)

— Porcentaje de variacién de y en la muestra explicada por x

e R? ~ 0 significa que la linea de regresiéon MCO ajusta mal

— Aun asi puede llegar a ser util

Pregunta. ;Qué significarfa una R? = 17

2.4 Unidades de medicion y forma funcional

.Qué le pasa a los estimados MCO cuando manipulamos los datos?

2.4.1 Efectos del cambio en unidades de medicion

. Qué pasa si cambiamos las unidades de medicion de las variables en el modelo RLS?
Podemos multiplicar por una constante c a la variable dependiente o a la independiente

e Sigi =B+ Bz y ys = cyr, entonces
Yo = 030 + Cgﬂ
— Afecta a ambos estimados
e Siy= 30 + 31951 y vy = %, entonces
y= Ao + 031962
— No afecta al intercepto
R? es invariante a cambios en unidades de x o y

e R? no depende de las unidades de medicién

Preguntas. Una regresiéon del salario expresado en miles de délares (salariomil)
sobre el rendimiento del capital expresado en porcentaje (roepct) arroja lo siguiente:

salariomil = 963.191 + 18.501roepct



e ;Como cambian los estimados si expresamos el salario en délares (salariodol)
(v el rendimiento del capital se queda en porcentaje, roepct)?

e ;Como cambian los estimados si expresamos el rendimiento del capital en
proporcién (roedec) (y el salario se queda en miles de ddlares, salariomil)?

2.4.2 Efectos no lineales en RLS

Hasta ahora solo hemos visto la relacion lineal entre x y y

e Es facil capturar efectos no lineales si definimos apropiadamente = y y
Podemos usar el logaritmo natural para capturar:

e Crecimiento porcentual constante (rendimientos crecientes)

e Elasticidad constante

Modelo nivel-nivel
y= 0o+ iz +u — Ay = pAzx

e Mismo efecto en y sin importar el valor inicial de x

Modelo log-nivel
log(y) = Bo + prz +u = Alog(y) = fiAr = %Ay~ (100 x p;) Az

Equivalente a y = exp(fy + 512 + u)
[Gréfical

Captura un crecimiento porcentual constante

Cambio en la variable dependiente crece por cada cambio unitario en x

100 x (3, se conoce como la semi-elasticidad de y respecto a x

Pregunta. Una regresion del logaritmo del salario en délares por hora sobre los
anos de educacion arroja lo siguiente:

—

log(salario) = 0.584 + 0.083educ

e ;Coémo cambia el salario por cada ano adicional de educacién?

Modelo log-log o de elasticidad constante
log(y) = Po + P1log(z) + u = Alog(y) = f1Alog(x) = %Ay =~ /1% Ax

e 31 se conoce como la elasticidad de y con respecto a x

Pregunta. Una regresion del logaritmo del salario sobre el logaritmo de los ventas



arroja lo siguiente:

—

log(salario) = 4.822 + 0.257 log(ventas)

e ;Coémo cambia el salario con las ventas?

Modelo nivel-log (poco usado)

y = Po+ prlog(z) +u = Ay = [1Alog(z) = %100A log(z) = Ay~ %%Ax
. 15—010 es el cambio unitario en y cuando x aumenta 1%

Preguntas. Una regresion de las horas trabajadas a la semana sobre el logaritmo
del salario por hora arroja lo siguiente:

horas = 33 + 45.1 log(salario)
e ;Cémo cambian las horas trabajadas con un aumento de 1% en el salario?

e ;Y si el salario aumenta en 10%?

2.4.3 Significado de regresién lineal

El modelo y = By + f1x + u permite capturar relaciones no lineales entre x y y

e El modelo es lineal en los parametros By y f1

e No hay restricciones en cémo se definen = y y
— Importante: Definiciones de = y y si afectan la interpretacion

e Ej. Modelo de regresion no lineal

1
' Bo + bz o

2.5 Valores esperados y varianzas de los estimadores MCO
Interesados en propiedades de los estimadores ,/8\0 y Bl para los parametros By y 51

e Propiedades de las distribuciones muestrales (valor esperado, varianza)

e Propiedades estadisticas (falta sesgo, consistencia)
Para estudiar esas propiedades, hacemos supuestos sobre la poblacién (modelo RLS)

e Supuestos Gauss-Markov (G-M)

— Supuestos ideales para obtener propiedades deseables
— Después desviaciones de esos supuestos

— Ej. Linea de produccion de una fabrica



2.5.1 Falta de sesgo en MCO

., Cual es el centro de la distribucién de 317

Supuesto RLS.1. El modelo es lineal en parametros

Este supuesto define el modelo poblacional
y = o+ bz +u
e [y y [ son los pardmetros poblacionales (desconocidos)
e 1, y, u son variables aleatorias

e Permite capturar relaciones no lineales

Supuesto RLS.2. La muestra es aleatoria

Obtenemos una muestra aleatoria de tamano n, {(z;,v;) | ¢ = 1,2,...,n}, del modelo
poblacional en RLS.1

e Usamos los datos para estimar los parametros
El modelo poblacional en términos de la muestra aleatoria es:
Yi = Po + Biwi +u; Vi
e u; son los factores no observados que afectan a y;
® u; # U

[Gréfica]

Supuesto RLS.3. Hay variacion en la variable independiente en la muestra

Los valores de z en la muestra, {x; | i = 1,2,...,n}, no son todos iguales
e Se puede verificar revisando que desvest(z;) # 0

e Recordatorio: Los estimados MCO para el intercepto y la pendiente estan definidos
solo si hay variacién en la variable independiente

Supuesto RLS.4. Media condicional cero

E (ulz) =0

Todos los otros factores que afectan a y no se correlacionan con x
e Para una muestra aleatoria, RLS.4 implica que E (u;|z;) =0 Vi
e Permite obtener estimadores de 5y y 7 insesgados

Bajo supuestos RLS.1-RLS .4, BO y B\l son insesgados



e Primero definimos: SCT, = Y21 (z; — 7)°

e Reescribimos 3 (variable aleatoria)

~ Y@= (yi—y) Y (wi—n)y Y (v =) (Bo + B +ui)

b= s sen, . SCT,
b= SCT. :>E@O_m+ SOt =5

e Para B\O, usamos y = [y + (17
=GP =B+ Bra+u— B = o+ (- B) o+
E (30) =0+ E (51 —§1> T+ E(u) =75
Comentarios sobre la falta de sesgo:
e Falta de sesgo depende de RLS.1-RLS 4
— Ej. Si RLS.4 no se cumple, B\g y El son sesgados
e En RLS siempre preocupa que Corr (z,u) # 0
— Puede resultar en correlacion espuria entre z y y

— Ej. Variable omitida

2.5.2 Varianza de los estimadores MCO

La distribucién de f; esta centrada en 31, jqué tan dispersa es?

Supuesto RLS.5. Homocedasticidad

Var (u | 2) = o?

La varianza del error no observado condicional en z es constante (homocedasticidad)

Es diferente del valor esperado de uw dado z: E (u|z) =0

No se utiliza para demostrar falta de sesgo

De la definicién de la varianza,
Var (u | z) =E (v | ) — [E (u | )] =E (v’ | z) =0

No depende de x, entonces 0 = E (u?) = Var (u)

02 es la varianza incondicional de u y se llama varianza del error

o es la desviacion estandar del error

Si Var (u | ) = g (x), el término de error exhibe heterocedasticidad

— Varianza no constante
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Podemos expresar RLS.4 y RLS.5 en términos de la media y varianza condicionales de y

RLS.4: E(y | ) = o + Pix , es lineal en x
RLS.5: Var (y | x) = 02, es constante
[Gréfical

Las varianzas muestrales de los estimadores MCO son

ORI OR

Vilidas solo bajo homocedasticidad
Maés variacién en lo no observado (u), hace mas dificil estimar (3;

Se prefiere més varianza en x; porque es mas facil estimar [;, asi como identificar
la relacion entre E (y | x) y x

Una muestra mas grande deberia aumentar SCT,

— Menor varianza para [3;

. Por qué no podemos calcular las varianzas muestrales?

2.5.3 Estimacion de la varianza del error

Las férmulas de las varianzas dependen de o2, generalmente se desconoce

Podemos estimar o2 para, a su vez, estimar Var (E()) y Var (B\l)

Importante distinguir entre:

Modelo poblacional: y; = By + Brx; + u;
— Usa pardmetros (p y [51) v los errores u; nunca se observan
Descomposicién entre valores ajustados y residuales: y; = B\o + B\lxi + Uy

— Usa estimados (Bo y Bo) y los residuales u; se obtienen de los datos

Podemos reescribir los residuales como funcion de los errores:

u;

=VYi —30 —31931' = (Bo + Bz + u;) —Eo —Eﬂ"i = Uj — (B\o —50> - (31 —51> T

Entonces u; # u;, aunque E (u; — ;) =0

Sabemos que 0% = [ (u?), entonces un ‘estimador’ insesgado serfa 2 = L 5™ w2
’ n =1 "

Tenemos estimados de u; (4;), entonces podriamos usar 52 = + 3" | 3

., Cual es el problema con ese estimador?

2 _ SCR
T on

. Problema? Es sesgado
No satisfice las restricciones de los residuales MCO: > u; =0y >z, =0

. Cuantos grados de libertad hay?

11



Un estimador insesgado de o2 es

o £ (32) = o?
e Si sustituimos o2 arriba, tenemos estimadores insesgados para Var <§0> y Var (B})

o = V0?2 se llama el error estandar de la regresién
e [E(0) # o pero es consistente

e Es un estimado de la desviacién estandar de los factores no observados que afectan
ay

e Propdsito principal: Usar o para estimar las desviaciones estandar de By y (1

g

Dado que desvest (31) = gt SU estimador es

o

errest (§1> = TTI

e Se conoce como el error estandar de [,

Representa tanto a una variable aleatoria como al estimado

Nos da una idea de la precision del estimador

Sirven para construir estadisticos de prueba e intervalos de confianza

2.6 Regresion por el origen y sobre una constante

Si imponemos la restriccién Sy = 0, escogemos 51 tal que y = B}x

Z?:l LilYi

B =
Z?:l 7

Igual que Bl pero con = 0

Al menos un x; # 0, jpor qué?

La linea pasa por el origen (y = 0 cuando x = 0)

Si By # 0, 51 estard sesgado [E <Bl) # ]
e R? < 0 es posible (7 ajusta mejor a y que 7)
Si imponemos la restriccion 51 = 0, EO =7
e Produce la menor suma de desviaciones cuadradas

o Si B #0, B estard sesgado [E <Bo) # Bo

12



2.7

Resumen del modelo RLS

Dada una muestra aleatoria, el método MCO se usa para estimar los parametros
del intercepto y la pendiente del modelo poblacional

Algebra de MCO: Podemos calcular valores ajustados, residuales y cambios predi-
chos en variable dependiente para un cambio dado en la variable independiente

Cuestiones practicas:

— Comportamiento de MCO cuando cambian las unidades de medicion

— Uso del logaritmo natural para modelar elasticidad constante y semi-elasticidad
Bajo supuestos RLS.1 a RLS.4, los estimadores MCO son insesgados

— RLS.4 no se cumple si valores omitidos en u se correlacionan con x
Si suponemos homocedasticidad, podemos estimar las varianzas muestrales de MCO
Regresién por el origen
.Qué falta?

— Eficiencia de MCO, hacer pruebas de hipdtesis sobre los pardmetros pobla-
cionales, intervalos de confianza

— RLS es un caso particular de RLM
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