New Keynesian (NK) Model Advanced Macro

Pavel Solís

CIDE

2025

Introduction \bullet		Traditional Model 00000

Introduction

- RBC model assumes perfect competition in goods and input markets
 - Classical tradition: Fluctuations are natural and efficient responses
 - Implication: Fiscal and monetary policies ineffective for macro conditions
- In MIUF model, money is neutral
- New-Keynesian economics embrace imperfect competition
 - Keynesian principles: Fluctuations are the result of market failures
 - Implication: Fiscal and monetary policies can improve macro conditions
- Over time, convergence in approach, so less fights about methodology
 - Micro foundations, nominal rigidities, shocks to demand and supply
 - See: Woodford (2003), Galí (2008), Blanchard (2025)

$\begin{array}{l} Assumptions \\ \bullet 0 \end{array}$	Traditional Model 00000

Assumptions: Economy

- Same assumptions about economy as in RBC model
- HHs: Same behavior as in RBC model
- Firms: Significant changes to supply side
 - Production now done in two steps
 - New ingredients: Monopolistic competition and price stickiness (friction)
- Central bank: New agent that conducts monetary policy
 - In practice, monetary policy influences economic activity in short run
 - In model, price stickiness makes monetary policy non-neutral
 - CB follows a Taylor (1993) rule to stabilize inflation and output gap
 - New shock: Monetary policy shock (in Taylor rule)

Assumptions	Handout 0000	Traditional Model

Assumptions: Firms

- Production side consists of two sectors (instead of one)
- Wholesalers: Producers of (differentiated) intermediate goods
 - Markets with **imperfect** competition: Similar but not identical goods
 - Optimize in two steps
 - Minimize TC (taking factor prices as given) by choosing production factors
 - Maximize profits by setting price of good
 - No fixed costs and constant returns to scale, so MC = average TC
- **Retailers**: Producers of (identical) final goods
 - Markets with **perfect** competition: A single bundle for consumption
 - Aggregators of a continuum $(j \in [0, 1])$ of wholesale goods (inputs)
 - Maximize profits by choosing wholesale goods (taking prices as given)

Assumptions	Handout	Traditional Model
	●000	

Wholesalers: Monopolistic Competition

- Firms produce differentiated goods having some degree of market power
 - Price setters, not price takers
- At optimum,
 - Profit-maximizing firms choose output so that MR = MC
 - Since demand curve above MR curve, price > MC (i.e., markup > 0)

	$\begin{array}{c} \text{Handout} \\ \text{0000} \end{array}$	Traditional Model 00000

Wholesalers: Price Stickiness

- Prices do not adjust immediately to changes in demand and/or supply
 - Rationale: Costs to adjust prices (e.g., menu cost)
- Price stickiness derived from behavior of optimizing agents
 - $-\,$ Rotemberg (1982) pricing: Firms face quadratic costs to change prices
 - Calvo (1983) pricing: Staggered price contracts
 - Every period, firms keep prices fixed $(p_{jt} = p_{jt-1})$ with probability θ
 - Price-setting is forward looking (b/c may not be able to adjust in future)
- Calvo pricing was key to derive NK Phillips curve (Roberts, 1995)
- With nominal rigidities, price response to a shock spreads out over time

 Introduction
 Assumptions
 Handout
 Traditional Model

 0
 00
 00
 00000

Retailers: Aggregation Technology

- Common aggregators: Dixit and Stiglitz (1977), Kimball (1995)
 - Harding, Lindé and Trabandt (2022) discuss differences
- Dixit-Stiglitz uses a constant elasticity of substitution (CES) function

$$Y_t = \left(\int_0^1 Y_{jt}^{\frac{\psi-1}{\psi}} dj\right)^{\frac{\psi}{\psi-1}}$$

- CES function nests others as special cases
 - $\psi \rightarrow 1$: Cobb-Douglas case
 - $-~\psi>1:$ Wholesale goods are imperfect substitutes, firms are price setters
 - $-\psi \rightarrow \infty$: W goods are perfect substitutes (linear case), no market power

	Handout 000●	Traditional Model 00000

Variables: Firm

- Y_t : Aggregate output (by retailers) at time t
- Y_{jt} : Output by intermediate firm j at time $t, \forall j \in [0, 1]$
- p_t : Aggregate price level at time t
- p_{jt} : Price for intermediate good j at time t
- μ_{jt} : Marginal cost for intermediate good j at time t
- s_t : Monetary policy shock
- ψ : Parameter for elasticity of substitution between wholes ale goods
- θ : Parameter for price stickiness (higher when $\theta \approx 1$)
- ϕ_Y, ϕ_π : Sensitivities of interest rate to output and inflation in Taylor rule
- ϕ_r : Interest rate persistence or smooting parameter in Taylor rule

	Traditional Model ●0000

Traditional NK Model

• Dynamic IS curve:

$$\tilde{X}_t = \mathbb{E}_t \tilde{X}_{t+1} - \frac{1}{\gamma} (\tilde{i} - \mathbb{E}_t \tilde{\pi}_{t+1}) + \left[\frac{1+\varphi}{\gamma+\varphi} \right] \mathbb{E}_t \Delta \tilde{A}_{t+1}$$

$$\tilde{\pi}_t = \beta \mathbb{E}_t \tilde{\pi}_{t+1} + \left[\frac{(\gamma + \varphi)(1 - \theta)(1 - \beta \theta)}{\theta} \right] \tilde{X}_t + \tilde{u}_t$$

• Taylor rule:

$$\tilde{i}_t = \bar{i} + \phi_\pi \tilde{\pi}_t + \phi_Y \tilde{X}_t + \tilde{s}_t$$

	Traditional Model 0●000

Dynamic IS (DIS) Curve

$$\tilde{X}_t = \mathbb{E}_t \tilde{X}_{t+1} - \frac{1}{\gamma} (\tilde{i} - \mathbb{E}_t \tilde{\pi}_{t+1}) + \lambda \mathbb{E}_t \Delta \tilde{A}_{t+1}$$

- AD equation:
 - Negative relationship between real interest rate and real activity
- DIS determines output gap given a path for real interest rate
- NK mechanism:
 - If monetary policy influences real rate, it can affect AD

	Traditional Model 00●00

NK Phillips Curve (NKPC)

$$\tilde{\pi}_t = \beta \mathbb{E}_t \tilde{\pi}_{t+1} + \kappa \tilde{X}_t + \tilde{u}_t$$

• AS equation:

- Positive relationship between inflation dynamics and real activity
- Inflation increases when output is larger than its natural level
- Key role for inflation expectations
- NKPC determines inflation given a path for output gap
- Optimally derived from firms with market power and sticky prices
 - Price stickiness governs slope of NKPC (Dynare)
 - When $\theta \to 0$ (flexible prices), $\kappa \to \infty$ (monetary policy is neutral)

	Traditional Model 000●0

Taylor Rule

$$\tilde{i}_t = \bar{i} + \phi_\pi \tilde{\pi}_t + \phi_Y \tilde{X}_t + \tilde{s}_t$$

- It closes model and determines its behavior
- How monetary policy reacts to deviations in inflation and output gap
- A role for central banks
 - A contractionary shock lowers both inflation and output gap
- Single mandate central bank: $\phi_Y = 0$
 - Blanchard-Kahn condition (Dynare): $\kappa(\phi_Y 1) > 0 \implies \phi_Y > 1$
 - Taylor principle: CB must react to inflation more than proportionally

	Traditional Model 0000●

(Positive) Shocks

- Technology shock:
 - Persistent decline in output gap (output increases less than natural level)
 - More productive firms, so real marginal cost and inflation fall
 - Central bank partly accommodates shock by lowering rates
 - Economy moves along DIS curve (AS curve shifts): output and inflation
- Cost push shock:
 - Inflation goes up, CB responds, real activity contracts
 - Fall in output gap due to output (natural level unaffected by nominal)
- Monetary policy shock:
 - Inflation (expectations) and output (gap) decline, real rate rises
 - Larger effect on output as degree of price stickiness increases (Dynare)