Real Business Cycle (RBC) Model

Pavel Solís

CIDE

2025

Introduction

- First RBC model dates back to Kydland and Prescott (1982)
 - Complications to increase persistence to shocks
- Hansen (1986) developed a basic RBC model with essential ingredients
- In RBC world, supply shocks generate economic fluctuations
- Neoclassical growth model as reference for economy's long-term behavior
 - Perfect competition and flexible prices
- Model describes behavior of two types of **representative agents**
 - A large number of identical consumers
 - A large number of identical firms

Introduction $\circ \bullet$	Assumptions	Handout	Equilibrium	Dynare
	0000	000	00	0000

Model Structure

- Assumptions about economy
- Agents' optimization problems
 - Households
 - Firms
- Model's equilibrium conditions
- Steady state
- Calibration
- Log-linearization
- Dynare implementation
- Impulse response functions

Introduction 00	Assumptions	Handout	Equilibrium	Dynare
	•000	000	00	0000

Assumptions About Economy

- Closed economy
- Only one (physical) good (as consumption or capital)
- No financial sector (interest rate is a proxy for return on capital)
- No government
- No adjustment costs
- No population growth
- No productivity growth

Households: Assumptions

- Continuum of mass 1 of identical HHs indexed by $j \in [0, 1]$
 - Per capita variable is equal to aggregate of same variable
 - Dividing aggregate variable by 1 gives the per capita
 - Remove index j to simplify notation
- HHs are owners of factors of production: Capital and labor
 - Factor markets are perfectly competitive (no rigidities)
- Each HH maximizes an intertemporal utility function
 - HH decides how much to consume, work and save (investment in capital)
- Utility is intertemporally additively separable (no habit formation) into:
 - Consumption (utility) and labor (disutility)

Households: Preferences

- Optimization problems have well-defined solutions when objective functions are concave and solution spaces are convex sets
- Preferences represented by a utility function: $U(C_t, H_t)$
 - $U_C > 0$ (utility); $U_H < 0$ (disutility); $U_{CC} < 0, U_{HH} < 0$ (concave)
 - Common utility functions: logarithm, CRRA, CES
- Future utility in present terms via an intertemporal discount factor: β - $\beta = 1/(1 + \theta)$, where θ is subjective rate of time preference
- Expectations operator conditional on information at time t: \mathbb{E}_t
- Each period capital dec
preciates at rate: δ

Firms: Assumptions

- Continuum of mass 1 of identical firms indexed by j ∈ [0, 1]
 Remove index j to simplify notation
- Each firm maximizes profits under perfect competition
- Technology represented by a production function: $F(K_t, H_t)$
 - $F_K > 0, F_H > 0$ (increasing); $F_{KK} < 0, F_{HH} < 0$ (concave)
 - Constant returns to scale: $F(zK_t, zH_t) = zY_t$
 - Inada conditions:

 $\lim_{K\to 0} F_K = \infty, \lim_{K\to\infty} F_K = 0, \lim_{H\to 0} F_H = \infty, \lim_{H\to\infty} F_H = 0$

– Common production functions: AK, Cobb-Douglas, CES

Introduction oo	Assumptions 0000	Handout ●00	Equilibrium oo	Dynare 0000

Handout

- Agents' optimization problems
 - Households
 - Firms
- First order conditions
- Model's equilibrium conditions
- Steady state
- Calibration
- Log-linearization
- Dynare implementation

Variables: Household

- C_t : Units of the good consumed
- H_t : Hours dedicated to labor
- K_t : Units of the good representing the capital stock
- I_t : Units of the good invested as capital
- T_t : Dividends or profits of the firm
- w_t : Wage per hour of labor
- r_t : Return per unit of capital
- p_t : Aggregate price level
- $\beta, \gamma, \varphi, \delta$: Parameters

Introduction	Assumptions	$\underset{OO}{\text{Handout}}$	Equilibrium	Dynare
00	0000		00	0000

Variables: Firm

- Y_t : Output
- A_t : Productivity
- V_t : Revenue
- TC_t : Total cost
- MC_t : Marginal cost
- T_t : Profits of the firm
- α, ρ_A, σ_A : Parameters

Unique and Stable Equilibrium

• Model in linearized form can be expressed as

$$A\begin{bmatrix}z_t\\E_tx_{t+1}\end{bmatrix} = B\begin{bmatrix}z_{t-1}\\x_t\end{bmatrix} + C\varepsilon_t$$

where

- $-z_t$ is a vector of predetermined variables at time t
- $-x_t$ is a vector of forward-looking variables
- $-\varepsilon_t$ is a vector of shocks
- -A, B and C are matrices

Unique and Stable Equilibrium

- Blanchard and Kahn (1980): Unique equilibrium and stability condition depends on magnitude of eigenvalues (λ) of matrix B
 - Eigenvalues that satisfy $|\lambda| > 1$ are called unstable roots
 - Unstable roots arise in dynamic models with forward-looking variables
- If number of unstable roots equals number of forward-looking variables, system has a unique solution and a stable saddle path
 - Otherwise, indeterminacy: multiple solutions or no solution
 - Causes: Calibration errors, model misspecification, ill-behaved expectations

Matlab

- Programming language developed by MathWorks
 - GUI: Command Window, Editor, Workspace, Current Folder
- Mainly used in engineering and economics for research and development
- It is built around matrices and arrays, easy to operate with them
- $\bullet\,$ Variable names must start with a letter; followed by letters, digits and $_-$
- Matlab (and Dynare) are case sensitive: $y \neq Y$
 - Beware: Some commands are Dynare-specific
- Write code in .m file and run it by typing its name in command window

Introduction 00	Assumptions 0000	$\operatorname{Handout}_{OOO}$	Equilibrium oo	Dynare 0●00

Dynare

- Install Dynare from http://www.dynare.org
- Add Dynare folder to Matlab path so that it can 'see' it
 - Every time you start Matlab, type: addpath C:\dynare\x.y\matlab
 - Set Path \rightarrow [dynare installation directory] \rightarrow matlab \rightarrow Add Folder...
- Write your model in a text file and save it with extension .mod
 - Preamble
 - Model block / Steady state
 - Shocks
 - Computations
- In Matlab, make sure current folder is where your .mod file is located
- Run it by typing dynare filename.mod in command window

.mod Files

- All lines must end with a semicolon ;
- Comments can be made with // or % for lines, /* */ for sections of code
- Blocks (model, steady_state_model, shocks) ended using end; command
- Equations entered one after another (separated by ;)
- Model needs to have as many equations as endogenous variables
- Variable and parameter names are case sensitive, must match preamble
- Default timing is t, so xt is x
 - Use x(+1) for leads of x and x(-1) for lags (same any lead or lag)
- No need to enter expectation operator, Dynare adds it automatically

Dynare Output

- All of Dynare output is stored in data structures, most important is oo_
- $\bullet\,$ Information about model can be found in structure M_-
- Linearization can be done manually
 - Equations in model block already linearized
- Dynare can also work with non-linear models:
 - Simulating using extended path methods
 - Solving and simulating models approximated to higher orders (¿1)