Gross Domestic Product (GDP) Measuring Output and Income

Outline

1. Computing GDP

2. Alternative Measures

3. Components of GDP

• Textbook Readings: Ch. 8

Gross Domestic Product (GDP)

Market value of all final goods and services produced within an economy in a given period of time

Market value

- GDP = $(P_A \times Q_A) + (P_O \times Q_O) = (\$0.50 \times 4) + (\$1.00 \times 3) = \5.00
- of all final goods and services produced
 - Ignores purchases of intermediate goods to avoid double-counting
 - Sale of used goods is not included as part of GDP

within an economy

- Honda made in US, Yes; Ford made in Peru, No
- in a given period of time
 - Quarter, Year

GDP is Output But is Measured in \$

- Two ways to view this statistic
 - Total income of everyone in the economy
 - Total expenditure on the economy's output of G&S

- For the economy as a whole **income = expenditure**
 - Every transaction has a buyer and a seller

- Challenge in measuring GDP
 - Avoid double counting (i.e. counting the same output more than once)

GDP Measuring Methods

- Expenditure Approach (Standard)
 - Add all final sales of goods and services produced
 - Unsold products counted as business expenditure \rightarrow Inventory
- Factor Income Approach
 - Add all payments to providers of inputs
 - Payments = Wages + Interest + Rent + Profit

Value Added Approach

- Add all additional value produced along output chain
- Value added: price sold price bought

A Stylized Economy: One Unit of Final Output

	Finished Product		Total Income				
	Selling Price:	Value Added:	Payments =	Wages +	Rents +	Interest +	Profits
Alpha Lumber Company	\$10	\$10	\$10	\$8	\$1		\$1
Beta Furniture Factory	\$70	\$60	\$60	\$55			\$5
Gamma Retailer	\$100	\$30	\$30	\$20	\$2	\$3	\$5
Totals		\$100	\$100				

Nominal GDP vs Real GDP

Nominal GDP: Uses current prices

- Nominal GDP²⁰¹⁸ = ($P_A^{2018} \times Q_A^{2018}$) + ($P_O^{2018} \times Q_O^{2018}$)
- Real GDP: Uses constant prices (base-year prices)
 - Real GDP²⁰¹⁷ = ($P_A^{2009} \times Q_A^{2018}$) + ($P_O^{2009} \times Q_O^{2018}$)
 - Real GDP varies only if the quantities produced vary

• **GDP deflator**: *Price* of output relative to its price in the base year $GDP \ Deflator = \frac{Nominal \ GDP}{Real \ GDP}$

Calculating Nominal GDP

 Suppose that a very simple economy produces only four goods and services: eye examinations, pizzas, shoes, and cheese. Assume that all the cheese in this economy is used in the production of pizzas. Use the information in the following table to compute GDP for the year 2017.

Production and Price Statistics for 2017					
Product	(1) Quantity	(2) Price per Unit			
Eye examinations	100	\$50.00			
Pizzas	80	10.00			
Shoes	20	100.00			
Cheese	80	2.00			

Calculating Real GDP

 Suppose that a very simple economy produces only the following three final goods and services: eye examinations, pizzas, and shoes. Use the information in the table on the right to compute real GDP for the year 2017. Assume that the base year is 2009.

	2009		2017		
Product	Quantity	Price	Quantity	Price	
Eye examinations	80	\$40	100	\$50	
Pizzas	90	11	80	10	
Shoes	15	90	20	100	

Growth Rate of GDP Deflator

	2007	2008
NOMINAL GDP	\$14,078 billion	\$14,441 billion
REAL GDP	\$13,254 billion	\$13,312 billion

FORMULA		APPLIED TO 2007	APPLIED TO 2008
GDP Deflator	$=\frac{\text{Nominal GDP}}{\text{Real GDP}} \times 100$	$\left(\frac{\$14,078 \text{ billion}}{\$13,254 \text{ billion}}\right) \times 100 = 106$	$\left(\frac{\$14,441\text{ billion}}{\$13,312\text{ billion}}\right) \times 100 = 108$

$$\left(\frac{108 - 106}{106}\right) \times 100 = 1.9\%$$

Growth Rate of Real GDP

$$Real \ GDP = \frac{Nominal \ GDP}{GDP \ Deflator}$$

• Nominal GDP rises by 4.25%

• Overall prices rise by 2.05%

• Roughly speaking, real GDP rose by 2.2%

GDP: Statistical Approximations

- The Bureau of Economic Analysis (BEA) provides both annual and quarterly figures
- In April of 2019, BEA estimated **2018 GDP** to be **\$18.765 trillion**

 Thus in calendar year 2018, the value of all goods and services produced, at constant prices, equaled \$18.765 trillion

BEA: Quarterly Annualized Estimates

One month after the conclusion of a quarter, BEA provides an estimate for quarterly GDP

- Quarterly estimates are provided as annualized figures
- They are also adjusted for recurring seasonal patterns they are "seasonally adjusted"

A Three Month Flow Annualized to A Year

2017:Q2 GDP = \$17.995 trillion

 In the second quarter of 2017, all final goods and services , in constant dollars, accumulated at a seasonally adjusted annualized value of \$17.995 trillion

• BEA collects 3 months of data and multiplies it by 4

Seasonal Adjustment: Separating Signal from Noise

Look beyond predictable seasonal changes!

How to Garner Signal from NSA Data?

• One way is to compare **comparable** months or quarters

Seasonal Adjustment Powerfully Alters Data

Retail Sales						
	Seasonally Adjusted	Month- over- Month	Seasonal Factor	Not Seasonally Adjusted	Month- over- Month	NSA Year- over-Year
	\$ Millions	%		\$ Millions	%	%
Dec-11	394.3		1.129	445.2		
Jan-12	397.1	0.7	0.918	364.5	-18.1	
Dec-12	414.6		1.14	472.6		6.2
Jan-13	415.1	0.1	0.922	382.7	-19.0	5.0

S.A. Data Can Deliver Useful Sequential Comparisons

U.S. Real GDP					
	\$ Billions	Annualized Growth Rate			
2007:Q4	\$14,996				
2008:Q1	\$14,895	-2.7%			
2008:Q2	\$14,969	2.0%			
2008:Q3	\$14,895	-2.0%			
2008:Q4	\$14,575	-8.3%			

How Does BEA Calculate Quarterly GDP Growth Rates?

 The annual growth rate would occur if the quarterly percent change was replicated for a full year

• Formula

$$[(GDP_{Q2}/GDP_{Q1})^4 - 1] \times 100$$

• For 2017:Q2

$$[(17,995/17,863)^4 - 1] \times 100 = 2.9\%$$

Other Measures of Income: GNP

• How do we link output and income?

• GDP = Gross **Domestic** Product (Domestic Income)

Domestic means 'on U.S. soil'

• GNP = Gross National Product

- National Income: Dollars collected by U.S. Entities
 - U.S. Citizens
 - U.S. Corporations

GDP and GNP: Different Organizing Principles

GDP based on location

- Ikea makes furniture in Florida
- Coca Cola makes soda in Brazil X

- GNP based on ownership
 - Mercedes makes profits in US
 - Apple makes profits in Germany
- From GDP to GNP:

GNP = GDP + Factor Payments from ROW – FP to ROW

X

Other Measures of Income: NNP & NI

- Gross investment fails to account for the effect of wear and tear on the capital stock
 - Formally, it ignores 'depreciation'
 - Depreciation of capital: Cost of producing the economy's output
- Net National Product accounts for depreciation
 NNP = GNP Depreciation
- A better measure of income

National Income = NNP – Statistical Discrepancy

Alternative Aggregate Measures: Final Sales

• GDP includes **inventory changes**

Economists like to know 'how much was sold?'

Final Sales = GDP - Inventory Investment

Final Sales

 In 2010, the jump for GDP growth was not matched by sales strength

Alternative Aggregate Measures: FSDP

- Final Sales exclude inventory changes
- But what happens if a surge in spending is on imports?
- Economists like to know 'how much was sold in the U.S.?'

• Final Sales to Domestic Purchasers = GDP – (Inventories and NX)

Final Sales to Domestic Purchasers

- A big tax cut = Stronger consumer spending
- A sharp rise for interest rates = Stronger dollar
- Strong spending + Strong dollar = Surging imports

Does GDP Measure What We Want It to Measure?

• Shortcomings of GDP as a Measure of Total Production

Household Production

- G&S people produce for themselves
- Does not include pie made by grandma

The Underground Economy

- Buying and selling of G&S concealed from government
- Avoid taxes or regulations
- G&S are illegal

Does GDP Measure What We Want It to Measure?

- Shortcomings of GDP as a Measure of Well-Being
 - The value of leisure is not included in GDP
 - GDP is not adjusted for pollution or other negative effects of production
 - GDP is not adjusted for changes in crime and other social problems
 - GDP measures the size of the pie but not how the pie is divided up

Did World War II Bring Prosperity?

Beyond GDP

Life satisfaction and GDP per person at PPP*

Circle size is proportional to population size

Beyond GDP

Data source: self-reported happiness from the World Value Survey; GDP per capita from the Penn World Table. The interactive data visualization is available at OurWorldinData.org. There you find the raw data and more visualizations on this topic.

Components of Expenditure

 Not only interested about the economy's total output of G&S but also about the allocation of output among alternative uses

- GDP (Y) is divided into 4 broad categories of spending:
 - Consumption (C)
 - Investment (I)
 - Government purchases (G)
 - Net exports (NX)

```
• GDP identity: Y = C + I + G + NX
```

Consumption (C)

Personal Consumption Expenditures, or "Consumption"
 Spending by *households* on G&S, not including spending on new houses

- Divided in the following subcategories:
 - Goods
 - Nondurable goods like food and clothing
 - Durable goods like cars and TVs
 - Services like haircuts, banking and doctor visits

Investment (I)

• Gross *Private* Domestic Investment, or "Investment"

- Spending by private sector on G&S that add to the nation's capital stock
- Examples: new factories, office buildings, machinery, and additions to inventories, and spending by HH and firms on **new** houses

- Investment does not include:
 - Financial investments Buying a stock or a bond does not produce a flow of new product
 - Purchases or sales of existing or used houses

Government Purchases (G)

- Government Consumption and Gross Investment, or "Government Purchases"
 - Spending by federal, state, and local governments on G&S
 - Examples: military equipment, highways, service by government workers

- It does **not** include **transfer payments**
 - Federal money sent to retirees, for social security, does not count
 - Federal money sent to Medicare recipients does not count

Why transfer payments are not included?

Net Exports (NX)

"Net Exports" of G&S account for trade with other countries

- Net expenditure from abroad on our G&S
- Exports (EX): Value of G&S sold to other countries
- Imports (IM): Value of G&S that foreigners sell us

• NX = EX - IM

• What do NX > 0 and NX < 0 mean?</p>

- Why do we subtract imports?
 - Do higher imports mean lower GDP?

Components of GDP in 2017

COMPONENTS OF GDP	
(Billions of Dollars)	
Consumption	\$12,035
Durable goods	1,769
Nondurable goods	2,612
Services	7,730
Investment	3,011
Fixed investment	2,974
Residential	605
Change in private inventories	16
Government Purchases	2,922
Federal	1,126
State and local	1,794
Net Exports	-654
Exports	2,230
Imports	2,884
GDP	\$17,287

Source: Bureau of Economic Analysis (BEA)

Consumption as Share of US Real GDP

Consumption as Share of China's Nominal GDP

Real Gross Private Investment as Share of US Real GDP

Real Government Expenditures as Share of US Real GDP

US Defense Spending as Share of US Real GDP

Shaded areas indicate US recessions - 2015 research.stlouisfed.org

US Non-Defense Spending as Share of US Real GDP

Shaded areas indicate US recessions - 2015 research.stlouisfed.org

Exports and **Imports** as Share of US Real GDP

