Saving, Investment and the Financial System

The World of Finance and its Macroeconomic Significance

Outline

1. The Financial System

2. Determinants of Borrowing Costs

3. (Expanded) Loanable Funds Model

• Textbook Readings: Ch. 6 pp. 186-191, Ch. 10 pp. 329-337

Introduction

 In a capitalist economy, the financial structure that facilitates economic activity is a dominant force

 Linking financial market dynamics to real economy trajectories is important

What is Finance?

• The management, creation and study of:

Money

Banking

Credit

Investments

Assets and Liabilities

Finance

Matching those with cash to those with ideas on how to use it

Lender \rightarrow Gives up cash today \rightarrow Collects cash in the future

Borrower \rightarrow Collects cash today \rightarrow Pays back in the future

• Lenders want to get back more than what they lent

Time value of money: Compensation for temporarily foregoing use of the funds

The Financial System in a Nutshell

• A financial system operating efficiently improves economic welfare of everyone in society

Some Key Players in Finance

Banks

Borrow from depositors, lend to homebuyers and businesses

Bonds

- Bond buyers provide loans for businesses and governments
- Bond buyers are promised a guaranteed interest payment

Stocks

- When firms issue new equity, they receive funds from share buyers
- Share buyers are not promised a guaranteed interest payment
- They own a piece of the gain in good times but they can lose everything if things go awry

Basics of Bond Terminology

- Face value or principal: \$1,000
- Coupon payments (interest payments): \$40
- Coupon rate: 4%
 - **\$40/\$1,000**
- Maturity: 30 years
- Bond price: \$950
- Interest rate: 7%

Basics of Stock Terminology

• Limited liability

Initial Public Offering

Retained earnings

Dividends

The World of Finance: 4 Key Functions

- Matching Savers and Borrowers
 - Financial intermediaries and financial markets
- Risk-sharing
 - Investors can spread their money over different assets, reducing their risk
- Liquidity
 - Allows savers to convert their investments into cash
- Information
 - Prices of financial securities represent beliefs about the future

The Efficient Market Hypothesis (EMH)

 An efficient financial market is one in which security prices always reflect all available information

- Investors buy/sell assets as the news flow changes opinion about future
- Assumptions:
 - 1. Investors are assumed to be rational (e.g. 3% vs 8%)
 - 2. If some are irrational, their actions are random and cancel
 - 3. If irrational in similar ways, rational speculators reverse effects on prices

Arbitrage Eliminates Any Riskless Wagers

Arbitrage and Efficient Markets in Action

Efficient Markets In Action						
	Statistics for 03/15/07					
Date Of	Years Remaining	Coupon	Date Of	Bond Price	Yield-to-	
Issuance	suance For Instrument		Maturity	Secondary Market	Maturity	
2/15/2007	10	4 5/8	2/15/2017	100	4.57	
5/15/1987	10	8 3/4	5/15/2017	132	4.64	

What Forces Drive Asset Prices?

• What forces drive stocks, bonds and all other asset prices?

- Changing expectations!
 - Expectations about real growth rates, inflation rate, profitability, probability of repayment

- Example: U.S. share prices (S&P500)
 - Confidence in a growing economy, 2002 through 2007 : 800 to 1450
 - Panic about collapsing economy, 2007 through early 2009: 1450 to 666

S&P 500

But Rational Expectations Swim Against Uncertainty

• We assume instantaneous, rational absorption of economic news

Rational investors want to pick higher paying assets

 But for many investment decisions, it is not obvious which will deliver the better payoff

• 'Nobody Knows, But Everybody Has to Guess'

How the Consensus Opinion About the Future Evolve?

- Consensus opinion about the outlook for overall trends
- Implied forecasts embedded in financial market asset prices

2013 Nobel Prize in Economics: E. Fama vs R. Shiller

- Two competing schools of thought concerning the collective insights of the many
- Eugene Fama (University of Chicago):
 - Markets are efficient, most of the time
 - The centerpiece of 'freshwater economics'
- Robert Shiller (Yale University):
 - Markets can be irrational, over long periods
 - Acceptable commentary at 'saltwater schools'

Credit Markets: Types of Instruments

Simple loan

- Borrower repays the principal amount plus an interest payment
- Fixed-payment loan
 - Car loan, home mortgage
- Coupon bond
 - Periodic interest payments until maturity, face value repaid at maturity
- Discount bond
 - Bought at a price below its face value, face value repaid at maturity

Treasury Securities

Discount bond

T-Bills (matures in 1 year or less)

Coupon bonds

T-Notes (matures between 2 to 10 years)

T-Bonds (matures between 10 to 30 years)

TIPS

Basics of Bond Valuation

Coupon bonds make payments at different times in the future

• How to value future cash flow payments?

- Price of a bond: Present value of all future cash flows
- Yield to maturity: Interest rate that equates the present value of future cash flows to its value today

Relationship Between Prices and Yields

- Imagine you pay \$200 for a bond that pays \$15 per year forever
- The yield to maturity on your bond is 7.5%
- Imagine that later:
 - Interest rates in other bonds have increased to 10%
 - You want to sell your bond
- How do you sell a bond that pays 7.5% when others pay 10%?
- What if interest rates would have gone down to 5%?

• **Key**: Negative relationship between prices and yields!

What Is the Effect of Inflation on the Cost of Borrowing?

- Instead of buying a \$1,000 computer today, Ernie lends the money to Bert for 1 year at a 5% interest rate
- After 1 year, Ernie receives \$1,050 from Bert but realizes that the computer now costs \$1,100
 - I got less than nothing for lending to Bert!
- Inflation can destroy purchasing power
- Moral: When you lend money, you want to be paid the real interest rate!

Fisher Equation

Nominal Interest Rate = Real Interest Rate + Inflation Rate

$$i = r + \pi$$

Bond yields driven by real growth expectations and inflation

The Great Disinflation, 1980-2000

• As inflation expectations fell, long rates fell

Real Interest Rate: Ex-Ante vs Ex-Post

• Ex-ante real interest rate: adjusted for expected inflation ($\pi = \pi^e$) • Very important and what economists typically mean by r

- Ex-post real interest rate: adjusted for actual inflation (π = π^{past})
 How well the lender/borrower did in real terms *after the fact* Real purchasing power of a loan
- Low real interest rate \rightarrow greater incentives to borrow, fewer to lend

What Do People Expect Inflation Will Be?

• One possibility is to assume inflation will behave as in the past • $\pi^e = \pi_{t-1}$

	10yr Yield	12-month Core CPI	Actual 10yr Rate of Inflation	Ex-ante Real 10yr Rate	Ex-post Real 10yr Rate
1970	6.4	4.6	7.9	1.8	-1.5
1980	12.8	9.6	4.8	3.2	8.0
2017	2.4	1.7	??	0.7	??

What Do People Expect Inflation Will Be?

- U.S. Treasury offer inflation 'protected' bonds
- TIPS (Treasury Inflation Protected Security) bonds tell us just that • Alternative to $\pi^e = \pi_{t-1}$
- The bond will pay you its (real) YIELD + the year-on-year change for the CPI, over the life of the bond
- Provide information about market expectations for inflation
 - Spread between the Treasury rate and the TIPS rate

The 10-Year Breakeven Inflation Rate

Breakeven Inflation

 By subtracting the TIPS yield from the regular bond yield, we derive break-even inflation rates

	Dec-99	6-Dec	16-Dec
10 year Tips Yield	4.30%	2.40%	0.16%
10-year T-note Yiled	6.40%	4.70%	1.79%
10-year breakeven inflation	2.10%	2.30%	1.63%

• Why does this hold?

Borrowing Rates As a Window on Future Rates

- You can lend to the federal government for 2 years by buying 2year notes
- Do that every 2 years 5 times, and you have lent to the federal government for 10 years
- Alternatively, buy a 10-year note, and lend for 10 years in one step
- But if EXPECTATIONS are that 2 year rates will be rising, you want a higher rate to lend for 10 years

(Expected) Future Rates

- The interest rate for 1 year is 8%
- The interest rate for 2 years is 10%
- What is the implied 1 year interest rate in 1 year?

$$(1.08)(1 + y) = (1.1)^2$$

- y = 0.1204 or 12.04%
- y is the **forward rate** that makes the returns equal

• Approximation:

$$\frac{8\% + y}{2} = 10\% \Longrightarrow y = 12\%$$

A Menu of Borrowing Costs: Governments and Firms

- Most macro models focus on the interest rate
- In reality, there are **many** interest rates

 U.S. 3-month:
 0.25%

 U.S. 2-year:
 0.90%

 U.S. 10-year:
 1.80%

 Portuguese 10-year:
 3.40%

 High-grade company:
 3.60%

 Risky company:
 4.35%

 Junk company:
 5.50%

Patterns? Why do they differ?

John R. Hicks: A Theory of Interest

• The interest rate a lender charges depends on:

DURATION

How long the loan lasts

• **DEFAULT**

How much risk of bankruptcy exists

• Duration and default (D&D) drive borrowing costs

Duration

 Bonds with same default risk (same issuer) may have different yields because their times to maturity are different

	<u>10/12/16</u>	<u>10/12/17</u>
U.S. 3-month:	0.25% (annualized)	1.05% (annualized)
U.S. 2-year:	0.90% per year	1.50% per year
U.S. 10-year:	1.80% per year	2.35% per year

• Yield Curve: Plot of yields on bonds with different maturities by the same issuer

Default Risk

 We can also look at *promised* interest payments on bonds of the same duration with different risk levels

- Risk-free:10-year U.S. government1.8% per yearRisky:10-year note from Sears5.8% per year
- Risky rates are higher
 - You are promised a much higher interest if you lend to Sears for 10 years
- But risky bonds are riskier
 - If you lend to Sears, they may go bankrupt → You may not get your money back

Bond Spreads

 Risky/risk-free spread: The interest rate on risky bonds minus the interest rate on risk-free bonds

• Risky/r-f spreads leap in recessions, recede as economy improves

Spreads as Collective Opinion About the Future

- Investors' collective opinion about the future
- Spreads between long-term bonds and short-term notes:
 Toll us whether investors think short term rates are going up or d
 - Tell us whether investors think short-term rates are going up or down
- Spreads between corporate bonds and government bonds:
 Tell us how much risk of bankruptcy investors see in the world

In 1962, 10-year T-note yields were 4%

In 1980, 10-year T-note yields were 13%

In 1993, 10-year T-note yields were 5.5%

• In 1999, 10-year T-note yields were 6.5%

Drivers of Borrowing Costs

- Our macroeconomic understanding requires several interest rates
- We need to understand the effects of real growth and inflation (expectations):
 - Real vs nominal interest rates
- We need to understand duration:
 - Short-term vs long-term interest rates
- We need to understand **default**:
 - Risk-free vs risky interest rates

Loanable Funds Model

The Macroeconomics of Saving and Investment

Begin with the GDP identity:

Y = C + I + G + NX

Assume a closed economy:

$$Y = C + I + G$$

Rearrange terms:

$$I = Y - C - G$$

Our Flow Model: S = I

• Define:
$$S_{private} = Y - C - T$$
, $S_{public} = T - G$

• Total (domestic) saving: $S = S_{private} + S_{public}$

• Substitute:
$$S = (Y - C - T) + (T - G)$$

• Simplify: S = Y - C - G

• Therefore, total saving must equal total investment (S = I)

The Market for Loanable Funds

- Households supply funds
 - They lend to firms and the government
- Firms and the government demand funds
 - They borrow from households
 - Note: Through its saving and dissaving, the government affects the quantity of funds that "pass through" to firms
- The interaction of borrowers and lenders determines the market interest rate and the quantity of loanable funds exchanged
 - What interest rate? Nominal or real?

The Loanable Funds Model

Shock: Real Activity Jumps (Technological Change)

Shock: Real Activity Jumps

• In 1983-1984, real growth soared. In reaction, T-note yields leapt

Shock: Increase in Government Purchases (G)

- Suppose the government runs a budget deficit
- To fund the deficit, it sells bonds to households, decreasing the supply of funds available to firms
- Crowding out: Decline in investment spending as a result of increases in G

Shock: Savings Up

- According to the loanable funds model what happens when saving increases?
 - Consumption decreases
 - Supply of loanable funds increases → lowers the real interest rate and increases the level of investment spending
 - Increase in investment spending might offset some or all of the decline in consumption

- In 2009, saving surged
 - According to this model, the surge in saving in 2009 did not played a big role in the recession. Do you agree?

Investment in 2009

• A collapse reflecting soaring interest rates

Company Borrowing Costs Were At Record Highs In 2009

	1997	2006	2009
10-Year Treasury	5.5	5	2.5
Junk Bond	8.0	7	17.5
Spread (Junk – 10-Year)	2.5	2	15

Keynes and the Paradox of Thrift

- Saving = Investment
- But if everyone tries to save more
 - Demand plunges (later we'll see why)
 - Slashed jobs = Sharp declines in income
 - Sharp fall for output and income so SAVING FALL
 - Investment fall
- As everyone tries to save more, saving actually goes down!
- That is Keynes's paradox of thrift

Shock: Savings Up (cont.)

• Loanable funds model: $r \downarrow$, $I \uparrow$. What does the data say?

In 2009, T-note rates plunged but investment plunged as well! Why?

What Happens In This Case?

• The model points to 'falling real interest rates', as saving increases

- But did the right interest rates fall?
 - Absolutely not!
 - Government borrowing rate plunges as savers bought safe bonds
 - Company borrowing rates soared!

 Our more detailed look at the world of finance allows us to reject the simplistic loanable funds model!

We Need to Understand Household Investment Choices

 During recessions, investors violently change their demand for risky assets vs risk-free assets

That means risky interest rates leap → Investment plunges

 Therefore, we can extend the loanable funds model by incorporating risk

Expanded Loanable Funds Model Part I

Definitions

• r_c = **real**, **long-term**, **corporate** borrowing rate

Inflation-adjusted interest rate risky borrowers pay for 10-year money

- r_g = real, long-term, government borrowing rate
 Inflation-adjusted interest rate the government pays for 10-year money
- S_c = households' supply of funds to corporations

S_g = households' supply of funds to the government

Expanded Loanable Funds Model

Why is D_c Downward Sloping and D_g a Vertical Line?

- D_c, the corporate demand for loanable funds, is quite sensitive to interest rates
 - If interest rate jumps company costs go up and can do less
- D_g, the government demand for loanable funds, ignores the level of interest rates
 - Government borrows to pay for social security, defense, pay its bills, etc.
 irrespective of the interest rate

Expanding on Crowding Out

What Happens in an Economic Crisis?

 HH saving leaps. But the increased savings supply goes to safe government debt: S_g soars. Amid panic, HH radically reduce their willingness to fund corporations: S_c plunges

What Happens in an Economic Crisis?

 Corporate borrowing rate, r_c, soars, and lending to corporations, Q_c, plunges. Government borrowing, Q_g, soars, as tax collections plunge and transfers leap as a result of higher unemployment. Nonetheless, the government borrowing rate, r_g, plunges

Equilibrium in 2009

• r_c much higher, Q_c much lower; r_g much lower, Q_g much higher

• Note: The spread between risky and risk-free bonds increased significantly

We Now Have a Model in Line with the Great Recession

